

388 Main Street East

Functional Site Servicing and Stormwater Management Report

Project Location:

388 Main Street East, Milton, ON

Prepared for:

Mikmada Homes Inc. Burlington, ON

Prepared by:

MTE Consultants Inc. 520 Bingemans Centre Drive Kitchener, ON N2B 3X9

February 25, 2025

MTE File No.: 56022-100

Contents

1.0	Intro	oduction	. 1
1.1	С	verview	. 1
2.0	Sto	rmwater Management	. 3
2.1	S	tormwater Management Criteria	. 3
2.	.1.1	Quantity Control	. 3
2.	1.2	Quality Control	. 3
2.2	Е	xisting Conditions	. 3
2.3	Р	roposed Conditions	. 5
2	.3.1	Water Quantity Control	. 5
2	3.2	Water Quality Control	. 8
2	.3.3	Private Storm Service Connection	. 9
2.4	S	ediment and Erosion Control	. 9
3.0	Sar	itary Sewer Servicing	. 9
3.1	Е	xisting Conditions	. 9
3.2	S	anitary Demands	. 9
3.3	Р	roposed Sanitary Servicing Plan and Capacity Analysis	10
4.0	Dor	nestic and Fire Water Supply Servicing	11
4.1	Е	xisting Conditions	11
4.2	D	omestic Water Demands	11
4.3	F	ire Flow Demands	11
4.4	Р	roposed Water Servicing Plan and Analysis	11
5.0	Cor	nclusions and Recommendations	12
Figure	es		
Figure	1.0	- Site Location Plan	. 2
		- Pre-Development Catchment Area	
⊢igure	3.U·	 Post-Development Catchment Areas 	. ნ

Tables

Table 2.1 – Existing Conditions Catchment Area	3
Table 2.2 – Allowable Site Discharge	
Table 2.3 – Proposed Conditions Catchment Areas	
Table 2.4 – Stage-Storage Discharge Calculations for Building Rooftop Ponding (Catchment 201)	
Table 2.5 – Stage-Storage-Discharge Calculations for Surface Ponding at AD2 (Catchment 202)	
Table 2.6 - Stage-Storage-Discharge Calculations for Surface Ponding at AD3 (Catchment 203)	
Table 3.1 – Population Estimate	
Table 3.2 – Sanitary Sewer Discharge from Site	
Table 4.1 – Domestic Water Demands	11

Appendices

MIDUSS Output Stormceptor Sizing Output Sanitary Sewer Demand Domestic Water Demand Appendix A Appendix B Appendix C Appendix D

1.0 INTRODUCTION

1.1 Overview

MTE Consultants Inc. was retained by Mikmada Homes Inc. to complete the site grading, servicing, and stormwater management design for the proposed development located at 388 Main Street East, 17 Prince Street, and 389-409 Pearl Street in the Town of Milton (see Figure 1.0 for Location Plan). This report will outline a functional servicing and stormwater management strategy for the proposed development.

The site is located on a 0.659ha parcel of land. The site is bounded by Main Street East to the north, Bruce Street to the east, Pearl Street to the south, and Prince Street to the west. The property is currently occupied by an existing commercial building and associated parking lot, as well as six existing residential dwellings with associated driveways and landscaped areas. The proponent plans to construct two residential towers atop of a 6-storey podium with three levels of underground parking. There will be several commercial units on the ground floor of the podium, along with a driveway entrance's connecting to Pearl Street and Bruce Street. New municipal concrete sidewalks will be installed as part of the development within the Prince Street and Bruce Street right-of-ways.

The functional servicing described in this report will provide additional detailed information on the proposed servicing scheme for the site. Please refer to the site plan and the enclosed MTE drawings for additional information.

2.0 STORMWATER MANAGEMENT

The following sections will describe the proposed stormwater management (SWM) plan for the proposed development.

2.1 Stormwater Management Criteria

The Stormwater management criteria was established following the review of the Town of Milton and Halton Region pre-consultation notes.

2.1.1 Quantity Control

As per the Town of Milton requirements and pre-consultation notes, attenuation of the 100-year post-development peak flow is to be controlled to the 5-year pre-development peak flow rate via on-site storage and flow controls.

2.1.2 Quality Control

Water quality treatment is required for most impacted surface runoff prior to discharging to the receiving system as per the Town of Milton requirements. Water quality treatment is proposed to be provided via an OGS unit on site before entering the municipal storm sewer along Main Street East.

2.2 Existing Conditions

Under existing conditions, the subject site is currently occupied by an existing commercial building and associated parking lot, as well as six existing residential dwellings with associated driveways and landscaped areas. The subject site sites at the top end of two storm drainage systems. There is an existing 375mm diameter storm sewer flowing westerly and an existing 450mm diameter storm sewer flowing easterly within the Main Street East right-of-way. There is also an existing 300mm diameter storm sewer flowing southerly within the Bruce Street right-of-way which connects to the existing 1200mm diameter storm sewer flowing westerly within the Pearl Street right-of-way. There are no known existing stormwater management quantity or quality controls on-site. The catchment for establishing the allowable flow rate has been defined by one catchment area with an existing imperviousness of 71.0%. See Table 2.1 and Figure 2.0.

Table 2.1 – Existing Conditions Catchment Area

#	Catchment	Area (ha)	% Impervious	Pervious CN	Impervious CN	Slope (%)	Flow Length (m)
101	Existing Site	0.659	72	75	90	3.0	25.0

The existing conditions were assessed using MIDUSS modelling 5-year design storm with Rainfall Intensity Equation Coefficients as per Table 4.3 in the Town of Milton Engineering and Parks Standards Manual Part 4 Grading and Stormwater Management (Sep 2024). Table 2.2 below summarizes the pre-development runoff rates for the 5-year storm event.

Table 2.2 – Allowable Site Discharge

Catchment	Area (ha)	Allowable Peak Discharge Rate (5-Year Storm Pre-development) ^A (m³/s)
101	0.659	0.148
Total	0.659	0.146

^A Discharge rate taken from MIDUSS Output (see Appendix A).

2.3 Proposed Conditions

The development proposes construction of an 18-storey tower and 8-storey podium along Main Street and Prince Street and 6-storey along Prince Street and Bruce Street with ground floor commercial. All parking is proposed to be underground with access from Pearl Street. Surface and underground parking will be included for the building. Associated walkways and landscaped areas are proposed along the perimeter of the site.

2.3.1 Water Quantity Control

Stormwater runoff from the site will be collected by a series of roof drains and area drains. These drains will connect to the internal plumbing of the building and therefore will be detailed by the mechanical consultant. The storm sewer outlet for the development will convey flows to the existing 375mm diameter combined sewer located on Main Street East.

Table 2.3 provides a brief description of each catchment area as well as the size and impervious cover associated with each. Figure 3.0 provides an illustration of the post-development catchment areas. Appendix A contains detailed information pertaining to the stormwater management model.

Table 2.3 – Post-Development Catchment Areas

#	Catchment	Area (ha)	% Impervious	Pervious CN	Impervious CN	Slope (%)	Flow Length (m)
201	Building Area	0.325	100	75	98	1.5	10.0
202	Controlled Areas to AD2	0.040	74	75	98	2.0	20.0
203	Controlled Areas to AD3	0.080	88	75	98	2.0	20.0
204	Uncontrolled Area	0.214	67	75	98	2.0	7.0

Stormwater management controls in the form of flow control roof drains (FCRD) and casting orifices proposed at the area drains located within the internal driveway will be implemented to attenuate post-development discharge rate to the allowable release rate for the site. Due to grading constraints, the exterior perimeter landscaped areas and walkways will drain uncontrolled to the abutting ROWs via overland sheet flow. These areas are primarily landscaped and concrete walkways and thus do not generate significant runoff.

In order to achieve the stormwater management requirements for the site, runoff generated from the controlled areas will be conveyed to area drains AD2 and AD3, wherein the flow will be controlled with the installation of two casting orifices 70mm at AD2 and 160mm at AD3. Storage volume for the orifice will be provided within the internal driveway areas. The maximum depth of ponding permitted within the parking area by grading is 10mm.

In addition, 15 flow-control roof drains, single notch with a rating of 22.5L/min/25mm, are proposed to be installed on the roof of the proposed podium and towers. This will help to further reduce the post-development runoff from the site. Volume for the FCRDs are provided on the building rooftop with the maximum ponding depth of 15mm. The flow equations for the orifice are included in Appendix A.

Tables 2.4, 2.5 and 2.6 summarize the stage-storage-discharge characteristics for building rooftop ponding (Catchment 201), surface ponding at AD2 (Catchment 202), and surface ponding at AD3 (Catchment 203) respectively. Refer to Appendix A for MIDUSS modelling results.

Table 2.4 – Stage-Storage Discharge Calculations for Building Rooftop Ponding (Catchment 201)

Depth (m)	Storage Volume (m³) ^A	Discharge, Q (m³/s) ^B	Comments
0.00	0.0	0.00000	Building Roof
0.05	2.7	0.01013	0.050m (2 inches) ponding on upper roof
0.10	33.6	0.02362	0.100m (4 inches) ponding on upper roof
0.15	97.9	0.03375	0.150m (6 inches) ponding on upper roof

Table 2.5 – Stage-Storage-Discharge Calculations for Surface Ponding at AD2 (Catchment 202)

Depth (m)	Storage Volume (m³) ^A	Discharge, Q (m³/s) ^B	Comments
199.25	0.0	0.00000	70mm Casting Orifice
199.40	0.0	0.00417	Contour
199.45	1.0	0.00481	Contour
199.50	6.7	0.00538	Contour

Table 2.6 - Stage-Storage-Discharge Calculations for Surface Ponding at AD3 (Catchment 203)

Depth (m)	Storage Volume (m³) ^A	Discharge, Q (m³/s) ^B	Comments
199.25	0.0	0.00000	160mm Casting Orifice
199.40	0.0	0.02174	Contour
199.45	0.6	0.02510	Contour
199.50	3.4	0.02806	Contour

With the addition of the 70mm and 160mm diameter casting orifice plates, the post-development runoff from the controlled driveway portion of the site for the 100-year storm events is controlled to 0.038m³/s and 0.064m³/s, respectively. The following table 2.7 summarizes the flows generated by the whole site.

Table 2.7 – Summary of Flows

Modelling Condition	5-Year Storm Event (m3/s)
Allowable Rate	0.146
Post-Development	0.144

For the 100-year storm event, the maximum ponding elevation is 149.49. This represents 9cm of ponding depth within the parking area, with no overflow.

2.3.2 Water Quality Control

A Stormceptor Model EFO4 will be installed at the downstream end of the stormwater management system prior to connecting into the existing 375mm diameter combined sewer within the Main Street North ROW to provide water quality control. The chosen unit is expected to provide Normal Level water quality control. The Stormceptor will require regular annual maintenance to ensure it is operating properly.

The following parameters were used to size the oil/grit separator:

• Upstream Catchment Area = 0.120ha (Catchments 202 + 203)

% Impervious = 89.2%Particle Distribution = CA ETV

The analysis indicates that a Stormceptor EFO8 will provide 70% TSS Removal and treat over 90% of the average annual runoff, which meets the requirements for a "Normal" (Level 2 or 70% TSS removal) level of water quality protection. Stormceptor sizing output information is included in Appendix B.

Stormwater runoff generated from the remainder of the site perimeter (Catchment 204) will flow overland uncontrolled to the abutting right-of-way. Since these areas are comprised of walkways and landscaped areas, stormwater runoff is generally considered to be clean and therefore no water quality controls will be provided for these areas.

2.3.3 Private Storm Service Connection

A proposed 300mm diameter private storm sewer service at a slope of 1% will outlet into the proposed OGS and then to the existing 375mm diameter combined sewer on Main Street East. The proposed 300mm diameter sewer has a full flow capacity of approximately 96.7L/s which is greater than the 100-year controlled peak discharge of 57L/s from all controlled areas. Therefore, the proposed storm lateral will have sufficient capacity to convey the proposed 100-year controlled peak flow from the site. Please refer to Drawing C2.1 for further site servicing details.

2.4 Sediment and Erosion Control

Sediment and erosion control measures will be implemented on site during construction and will conform to the Erosion & Sediment Control Guideline for Urban Construction and City of Milton Standards.

Sediment and erosion control measures will include:

- Installation of silt control fencing at strategic locations around the perimeter of the site where feasible.
- Preventing silt or sediment laden water from entering inlets (catchbasins / catchbasin-manholes) by wrapping their tops with filter fabric or installing silt sacks.
- Construction of a mud mat at the exit from the site to Pearl Street to mitigate the transportation of sediments to the surrounding roads.
- Maintaining sediment and erosion control structures in good repair (including periodic cleaning as required) until such time that the Engineer or Town of Milton approves their removal. Erosion control measures to be inspected daily and after any rainfall event.

3.0 SANITARY SEWER SERVICING

3.1 Existing Conditions

There is an existing 200mm diameter sanitary sewer flowing east at approximately 0.6% within the Main Street East right-of-way. This existing sewer has a full flow capacity of approximately 25.4L/s, which will be utilized to service the site.

There is also an existing 200mm diameter sanitary sewer flowing south at approximately 3.3% within the Prince Street right-of-way which connects to an existing manhole located within the Prince Street and Pearl Street intersection. From this manhole, an existing 200mm diameter sanitary sewer flows easterly within the Pearl Street right-of-way.

3.2 Sanitary Demands

The anticipated sanitary discharge from the proposed development was estimated using Regional Municipality of Halton Water and Wastewater Linear Design Manual, as well as the Ontario Building Code Sewage Design Flows based on the proposed building usage.

Table 3.1 provides an estimate of the building population and the number of units in the residential portion of building.

Table 3.1 – Population Estimate

Unit Types	Total Number of Units	People per Unit	Population (People) ^B
Commercial Units			
Commercial	6 (Total 815m ²)	90 persons/ha ^A	8
Residential Units			
1-Bedroom Units	570	1.7 ^C	969
	977		

^A Population density-based Table 3-2 of Regional Municipality of Halton Water and Wastewater Linear Design Manual (v5, October 2019)

To determine sanitary discharge rates from these uses, the commercial floor area was used along with the 2012 Ontario Building Code (OBC) flow rates for a Shopping Centre (excluding food and laundry) to be conservative. Region of Halton guidelines were used to calculate discharge rates from the residential units. The sanitary sewer discharge rates from the development and detailed calculations are summarized in Table 3.2 and Appendix C.

Table 3.2 – Sanitary Sewer Discharge from Site

Land Use	Population (people)	Average Flow (L/s)	Peak Flow (L/s)			
Residential Units	969 ^A	3.084 ^B	15.421 ^C			
Commercial Space	8 ^A	0.047 ^D	0.236 ^C			
	15.657 ^F					
Total Peak Sanita	Total Peak Sanitary Demand for Site (with infiltration allowance)					

^A Population Estimate: see Table 3.1

Area reflects site area (0.659ha), I = 0.286*0.659 = 0.188L/s

3.3 Proposed Sanitary Servicing Plan and Capacity Analysis

As calculated in Table 3.2, the total hourly peak sanitary discharge from the site is 15.845L/s.

The proposed building will be serviced by a 200mm diameter sanitary service at 1.0% slope (full flow capacity = 32.8L/s) that will connect to the Main Street East sanitary sewer. The calculated sanitary discharge rate of 15.845L/s (per Table 3.2) is less than the capacity of the Main Street East sanitary sewer (25.4L/s) and represents 62.4% of the total sewer capacity. Therefore, it is

^B Population calculated as (Total # of Units) X (Persons per Unit)

^C Assumed 1.7 people per residential unit.

^B Average flow based on 275 L/ca/day per Section 2.4 in Regional Municipality of Halton Water and Wastewater Linear Design Manual (v5, October 2019). Avg Flow = 275*969/(24*60*60) = 3.084L/s

^C Peak flow = Average Flow*PF, where Babbit Peaking Factor (PF) = $5 \div (P^0.2) = 5 \div (977 \div 1000)^0.2 = 5.02$ (max 5.0).

D Commercial average flow = $(5L/m^2/day)^*(815 \text{ m}^2 \text{ floor space})/(24*60*60) = 0.047L/s$

F Total Peak flow = Peak flow from Residential + Commercial

^G Total Peak flow with infiltration = Total Peak flow + Infiltration Allowance = 15.657 + 0.188 = 15.845L/s where infiltration is based on 0.286L/s/ha.

not expected at the proposed development will adversely impact the existing combined sewer system.

4.0 DOMESTIC AND FIRE WATER SUPPLY SERVICING

4.1 Existing Conditions

The existing municipal water distribution system around the site consists of a 300mm diameter watermain within the Main Street East right-of-way, a 150mm diameter watermain within the Prince Street right-of-way, and a 150mm reduced to 100mm diameter watermain within the Pearl Street right-of-way. There are three existing municipal hydrants located at the the south, east and west corners of the Site.

4.2 Domestic Water Demands

The expected domestic water demands for the proposed development were estimated using Region of Halton design criteria. Table 4.1 summarizes the domestic water demand requirements for the Average Day, Maximum Day and Peak Hour demand scenarios and detailed calculations are provided in Appendix D. It should be noted that average day peak factor is 1.0, the max day peak factor is 2.25 and the peak hour factor is 4.0 in accordance with Region of Halton standards.

Table 4.1 – Domestic Water Demands

Residential Demands		
Population:	969 people (see Table 3.1)	
Average Day Demand:	275L/c/d x 969 people =	3.084L/s
Maximum Day Demand:	2.25 x 3.084L/s =	6.939L/s
Peak Hour Demand:	4.0 x 3.084L/s =	12.336L/s
Commercial Demands		
Population:	8 people (see Table 3.1)	
Average Day Demand:	275L/c/d x 8 people=	0.025L/s
Maximum Day Demand:	2.25 x 0.025L/s =	0.056L/s
Peak Hour Demand:	4.0 x 0.025L/s =	0.010L/s

4.3 Fire Flow Demands

A hydrant flow test will need to be completed when weather permits to determine if the fire flow demands for the building will be satisfied as per the methodology outlined in Water Supply for Public Fire Protection (Fire Underwriters Survey (FUS), 1999).

4.4 Proposed Water Servicing Plan and Analysis

Water servicing for the site will include the installation of a 200mm diameter water service off the existing 300mm diameter watermain on Main Street East to service the proposed building. The service will be split at property line into a 150mm diameter domestic service and 200mm diameter fire service.

It is expected that the existing municipal fire hydrants located at the south, east and west corners of the Site will be sufficient to provide fire protection for the building. The fire department connection of the building will likely be proposed to be within 45m of these existing fire hydrants. The pressures and flows at the hydrant must be sufficient for firefighting conditions as established by the Ontario Building Code (2012). The minimum residual pressure under firefighting conditions is 140kPa (20.3psi) per OBC 2012 A-3.2.5.7 3(b).

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the information provided herein, it is concluded that the development can be constructed to meet the requirements of the Town of Milton. Therefore, it is recommended that:

- The 100-year post-development flow rate be attenuated to the 5-year pre-development flow rate through the installation of casting orifices and roof storage complete with flow control drains.
- ii. Erosion and sediment controls be installed as described in Section 2.4 of this report.
- iii. Sanitary servicing for the development be installed as described in Section 3.3 of this report.
- iv. On-site storm sewers connect to existing storm sewers on Main Street East described in Section 2.3.
- v. Water servicing for the development be installed as described in Section 4.4 of this report to meet OBC and the Region of Halton minimum water supply requirements.
- vi. The site grading works described in this report and as shown on Drawings C2.1 be accepted.

We trust the information enclosed herein is satisfactory. Should you have any questions please do not hesitate to contact our office.

All of which is respectfully submitted,

MTE Consultants Inc.

Jolie Nguyen, B.Eng.

Designer

519-743-6500 ext. 1222

inguyen@mte85.com

JHN:dlb

M:\56022\100\Reports\FSSWM\rpt_2025-02-25_FS&SWM.docx

J. P. LERCH 100169016 2025-02-25

Jeff Lerch, P.Eng. Design Engineer 519-743-6500 ext. 1307 jlerch@mte85.com

Appendix A

MIDUSS Output

CALCULATIONS

Orifice Equation (MIDUSS NET)

 $Q = C_c p/4 D5 sqrt(2g(H-2/3D))$

where

- C_c coefficient of contraction
- H head relative to the invert of the orifice
- D orifice diameter
- g gravitational acceleration

Pre-Development


```
"
                 MIDUSS Output -----
"
                 MIDUSS version
                                                           Version 2.25 rev. 473"
п
                 MIDUSS created
                                                         Sunday, February 7, 2010"
            10
                 Units used:
                                                                         ie METRIC"
                 Job folder:
                                                Q:\56022\100\SWM\Miduss modelling"
                 Output filename:
                                                                    5 year pre.out"
                                                                                  Α"
                 Licensee name:
"
                 Company
"
                                                           1/20/2025 at 4:37:26 PM"
                 Date & Time last used:
              TIME PARAMETERS"
 31
11
         5.000
                 Time Step"
11
       180.000
                 Max. Storm length"
"
      1500.000
                 Max. Hydrograph"
 32
              STORM Chicago storm"
"
             1
                 Chicago storm"
"
                 Coefficient A"
       959.000
11
                 Constant B"
         5.700
                 Exponent C"
         0.802
         0.400
                 Fraction R"
       180.000
                 Duration"
         1.000
                 Time step multiplier"
••
              Maximum intensity
                                            143.166
                                                       mm/hr"
              Total depth
                                             43.496
                                                       mm"
                 005hyd
                           Hydrograph extension used in this file"
 33
              CATCHMENT 101"
11
                 Triangular SCS"
             1
             1
                 Equal length"
             1
                 SCS method"
           101
                 Pre-development"
        71.600
                 % Impervious"
..
                 Total Area"
         0.659
                 Flow length"
        25.000
11
                 Overland Slope"
         3.000
         0.187
                 Pervious Area"
        25.000
                 Pervious length"
•
         3.000
                 Pervious slope"
                 Impervious Area"
         0.472
        25.000
                 Impervious length"
                 Impervious slope"
         3.000
11
         0.250
                 Pervious Manning 'n'"
        75.000
                 Pervious SCS Curve No."
                 Pervious Runoff coefficient"
         0.235
                 Pervious Ia/S coefficient"
         0.100
•
                 Pervious Initial abstraction"
         8.467
"
                 Impervious Manning 'n'"
         0.015
                 Impervious SCS Curve No."
        98.000
11
                 Impervious Runoff coefficient"
         0.868
         0.100
                 Impervious Ia/S coefficient"
••
                 Impervious Initial abstraction"
         0.518
                       0.146
                                 0.000
                                            0.000
                                                      0.000 c.m/sec"
```

"	Catchment 101	Pervious	Impervious	Total Area	a "
"	Surface Area	0.187	0.472	0.659	hectare"
"	Time of concentration	15.736	1.559	2.934	minutes"
"	Time to Centroid	121.002	89.308	92.382	minutes"
"	Rainfall depth	43.496	43.496	43.496	mm"
"	Rainfall volume	81.40	205.23	286.64	c.m"
"	Rainfall losses	33.270	5.738	13.557	mm"
"	Runoff depth	10.226	37.758	29.939	mm"
"	Runoff volume	19.14	178.16	197.30	c.m"
"	Runoff coefficient	0.235	0.868	0.688	ш
"	Maximum flow	0.007	0.145	0.146	c.m/sec"
" 40	HYDROGRAPH Add Runoff	II .			
"	4 Add Runoff "				
"	0.146 0.14	6 0.000	0.000"		
" 40	HYDROGRAPH Copy to Out	flow"			
"	<pre>8 Copy to Outflow"</pre>				
"	0.146 0.14	6 0.146	0.000"		
" 38	START/RE-START TOTALS	101"			
"	3 Runoff Totals on EX	IT"			
"	Total Catchment area		0.	.659 hed	tare"
"	Total Impervious area		0.	.472 hed	tare"
"	Total % impervious		71.	.600"	
" 19	EXIT"				

Post-Development


```
MIDUSS Output ----->"
               MIDUSS version
                                                      Version 2.25 rev. 473"
               MIDUSS created
                                                     Sunday, February 7, 2010"
               Units used:
          10
                                                                    ie METRIC"
               Job folder:
                                            Q:\56022\100\SWM\Miduss modelling"
               Output filename:
                                                          100 year post b.out"
               Licensee name:
               Company
                                                      1/21/2025 at 9:51:26 AM"
               Date & Time last used:
            TIME PARAMETERS"
31
       5.000
               Time Step"
     180.000
               Max. Storm length"
    1500.000
               Max. Hydrograph"
32
           STORM Chicago storm"
           1
               Chicago storm"
    1435.000
               Coefficient A"
       5.200
               Constant B"
               Exponent C"
       0.775
       0.400
               Fraction R"
     180.000
               Duration"
       1.000
               Time step multiplier"
           Maximum intensity
                                        237.184
                                                   mm/hr"
            Total depth
                                                   mm"
                                         75.218
               100hyd
                        Hydrograph extension used in this file"
           CATCHMENT 201"
33
           1
               Triangular SCS"
           1
               Equal length"
               SCS method"
           1
         201
               Building Rooftop"
               % Impervious"
     100.000
       0.325
               Total Area"
               Flow length"
      10.000
               Overland Slope"
       1.500
      0.000
               Pervious Area"
               Pervious length"
      10.000
       1.500
               Pervious slope"
               Impervious Area"
      0.325
               Impervious length"
      10.000
       1.500
               Impervious slope"
               Pervious Manning 'n'"
      0.250
      75.000
               Pervious SCS Curve No."
               Pervious Runoff coefficient"
       0.000
               Pervious Ia/S coefficient"
       0.100
               Pervious Initial abstraction"
       8.467
       0.015
               Impervious Manning 'n'"
               Impervious SCS Curve No."
      98.000
               Impervious Runoff coefficient"
      0.891
      0.100
               Impervious Ia/S coefficient"
       0.518
               Impervious Initial abstraction"
                    0.180
                              0.000
                                                  0.000 c.m/sec"
                                        0.000
                                              Impervious Total Area "
            Catchment 201
                                   Pervious
            Surface Area
                                   0.000
                                              0.325
                                                         0.325
                                                                    hectare"
            Time of concentration 7.029
                                              0.893
                                                         0.893
                                                                    minutes"
            Time to Centroid
                                   0.000
                                              87.489
                                                         87.489
                                                                    minutes"
            Rainfall depth
                                                                    mm"
                                   75.218
                                              75.218
                                                         75.218
            Rainfall volume
                                              244.46
                                                                    c.m"
                                   0.00
                                                         244.46
            Rainfall losses
                                   75.218
                                              8.167
                                                         8.167
                                                                    mm"
            Runoff depth
                                   0.000
                                                                    mm"
                                              67.052
                                                         67.052
            Runoff volume
                                   0.00
                                              217.92
                                                         217.92
                                                                    c.m"
```

```
Runoff coefficient
                                     0.000
                                                0.891
                                                            0.891
            Maximum flow
                                                                        c.m/sec"
                                     0.000
                                                0.180
                                                            0.180
40
            HYDROGRAPH Add Runoff "
               Add Runoff "
                     0.180
                               0.180
                                          0.000
                                                     0.000"
54
            POND DESIGN"
       0.180
               Current peak flow
                                      c.m/sec"
       0.090
               Target outflow
                                   c.m/sec"
       217.9
               Hydrograph volume
                                      c.m"
               Number of stages"
         11.
                                        metre"
       0.000
               Minimum water level
       0.150
               Maximum water level
                                        metre"
       0.000
                                         metre"
               Starting water level
           0
               Keep Design Data: 1 = True; 0 = False"
                  Level Discharge
                                      Volume"
                                       0.000"
                  0.000
                            0.000
                                     0.09795"
               0.01500
                          0.00338
               0.03000
                          0.00675
                                      0.7836"
               0.04500
                          0.01013
                                       2.645"
               0.06000
                          0.01350
                                       6.269"
               0.07500
                          0.01688
                                      12.244"
               0.09000
                          0.02025
                                      21.158"
                                      33.598"
                 0.1050
                          0.02362
                                      50.152"
                 0.1200
                          0.02700
                                      71.408"
                 0.1350
                          0.03038
                 0.1500
                          0.03375
                                      97.954"
               ROOFTOP"
          1.
               Roof area Store area Area/drain Drain flow Roof slope"
                                                                      g H:1V"
                              hectare
                                                     L/min/25mm
                  hectare
                                          sq.metre
                                                                      37.800"
                    0.325
                                0.244
                                           160.000
                                                         22.500
            Using 15 roofdrains on roofstorage area of 2438. square metre"
            Peak outflow
                                                      c.m/sec"
                                            0.033
                                                      metre"
            Maximum level
                                            0.148
                                           93.608
                                                      c.m"
            Maximum storage
                                                     hours"
            Centroidal lag
                                            1.956
                  0.180
                            0.180
                                       0.033
                                                 0.000 c.m/sec"
                                      1"
40
            HYDROGRAPH
                          Combine
               Combine "
               Node #"
           1
               Total Area"
            Maximum flow
                                            0.033
                                                      c.m/sec"
                                                      c.m"
            Hydrograph volume
                                          217.931
                                                     0.033"
                     0.180
                               0.180
                                          0.033
40
            HYDROGRAPH Start - New Tributary"
               Start - New Tributary"
                                                     0.033"
                     0.180
                               0.000
                                          0.033
33
            CATCHMENT 202"
               Triangular SCS"
           1
           1
               Equal length"
               SCS method"
           1
               Area to AD2"
         202
      74.000
               % Impervious"
       0.040
               Total Area"
      20.000
               Flow length"
       2.000
               Overland Slope"
       0.010
               Pervious Area"
      20.000
               Pervious length"
               Pervious slope"
       2.000
       0.030
               Impervious Area"
```

```
Impervious length"
      20.000
               Impervious slope"
       2.000
       0.250
               Pervious Manning 'n'"
               Pervious SCS Curve No."
      75.000
       0.389
               Pervious Runoff coefficient"
               Pervious Ia/S coefficient"
       0.100
               Pervious Initial abstraction"
       8.467
               Impervious Manning 'n'"
       0.015
               Impervious SCS Curve No."
      98.000
       0.908
               Impervious Runoff coefficient"
               Impervious Ia/S coefficient"
       0.100
       0.518
               Impervious Initial abstraction"
                               0.000
                                                    0.033 c.m/sec"
                     0.017
                                          0.033
                                                Impervious Total Area "
            Catchment 202
                                     Pervious
            Surface Area
                                     0.010
                                                0.030
                                                            0.040
                                                                       hectare"
            Time of concentration
                                    9.773
                                                1.242
                                                            2.357
                                                                       minutes"
            Time to Centroid
                                     111.485
                                                88.107
                                                            91.163
                                                                       minutes"
            Rainfall depth
                                                                       mm"
                                     75.218
                                                75.218
                                                            75.218
            Rainfall volume
                                     7.82
                                                22.26
                                                            30.09
                                                                       c.m"
            Rainfall losses
                                                                       mm"
                                    45.979
                                                6.911
                                                            17.069
            Runoff depth
                                                68.308
                                                                       mm"
                                     29.239
                                                            58.150
            Runoff volume
                                     3.04
                                                20.22
                                                            23.26
                                                                       c.m"
            Runoff coefficient
                                                0.908
                                                            0.773
                                     0.389
            Maximum flow
                                     0.001
                                                            0.017
                                                                       c.m/sec"
                                                0.016
            HYDROGRAPH Add Runoff "
40
               Add Runoff "
                                          0.033
                                                    0.033"
                     0.017
                               0.017
            POND DESIGN"
54
       0.017
               Current peak flow
                                      c.m/sec"
       0.010
               Target outflow
                                  c.m/sec"
        23.3
               Hydrograph volume
                                      c.m"
               Number of stages"
          4.
     199.250
               Minimum water level
                                        metre"
     199.500
               Maximum water level
                                        metre"
     199.250
               Starting water level
                                         metre"
               Keep Design Data: 1 = True; 0 = False"
           0
                 Level Discharge
                                     Volume"
               199.250
                            0.000
                                       0.000"
                          0.00417
                                   1.00E-07"
               199.400
                          0.00481
               199.450
                                       1.000"
               199.500
                          0.00538
                                       6.700"
               HOR. ORIFICES"
          1.
                          Orifice
                                     Orifice Number of"
               Orifice
                invert coefficie
                                   diameter orifices"
                                                 1.000"
               199.250
                            0.630
                                      0.0700
            Peak outflow
                                            0.005
                                                     c.m/sec"
            Maximum level
                                          199.492
                                                     metre"
                                            5.841
                                                     c.m"
            Maximum storage
            Centroidal lag
                                            1.651
                                                    hours"
                            0.017
                 0.017
                                       0.005
                                                 0.033 c.m/sec"
                                      1"
40
            HYDROGRAPH
                          Combine
               Combine "
           6
               Node #"
           1
               Total Area"
            Maximum flow
                                            0.038
                                                     c.m/sec"
                                                     c.m"
            Hydrograph volume
                                          240.725
                     0.017
                               0.017
                                          0.005
                                                    0.038"
            HYDROGRAPH Start - New Tributary"
40
               Start - New Tributary"
```

```
0.038"
                     0.017
                               0.000
                                          0.005
33
            CATCHMENT 203"
               Triangular SCS"
           1
           1
               Equal length"
           1
               SCS method"
               Area to AD3"
         203
      88.000
               % Impervious"
               Total Area"
       0.080
               Flow length"
      20.000
       2.000
               Overland Slope"
               Pervious Area"
       0.010
      20.000
               Pervious length"
       2.000
               Pervious slope"
       0.070
               Impervious Area"
      20.000
               Impervious length"
               Impervious slope"
       2.000
               Pervious Manning 'n'"
       0.250
               Pervious SCS Curve No."
      75.000
               Pervious Runoff coefficient"
       0.389
               Pervious Ia/S coefficient"
       0.100
       8.467
               Pervious Initial abstraction"
       0.015
               Impervious Manning 'n'"
               Impervious SCS Curve No."
      98.000
       0.908
               Impervious Runoff coefficient"
               Impervious Ia/S coefficient"
       0.100
       0.518
               Impervious Initial abstraction"
                               0.000
                     0.039
                                          0.005
                                                     0.038 c.m/sec"
            Catchment 203
                                                Impervious Total Area "
                                     Pervious
            Surface Area
                                     0.010
                                                0.070
                                                            0.080
                                                                        hectare"
            Time of concentration
                                    9.773
                                                1.242
                                                            1.713
                                                                        minutes"
            Time to Centroid
                                     111.485
                                                88.107
                                                            89.396
                                                                        minutes"
                                                                        mm"
            Rainfall depth
                                     75.218
                                                75.218
                                                            75.218
            Rainfall volume
                                                52.95
                                                                        c.m"
                                     7.22
                                                            60.17
                                                                        mm"
            Rainfall losses
                                     45.979
                                                6.911
                                                            11.599
                                                                        mm"
            Runoff depth
                                     29.239
                                                68.308
                                                            63.620
            Runoff volume
                                     2.81
                                                48.09
                                                            50.90
                                                                        c.m"
            Runoff coefficient
                                     0.389
                                                0.908
                                                            0.846
            Maximum flow
                                                            0.039
                                                                        c.m/sec"
                                     0.001
                                                0.038
            HYDROGRAPH Add Runoff "
40
               Add Runoff "
                     0.039
                                          0.005
                                                     0.038"
                               0.039
            POND DESIGN"
54
       0.039
               Current peak flow
                                      c.m/sec"
       0.009
               Target outflow
                                   c.m/sec"
        50.9
               Hydrograph volume
                                      c.m"
          4.
               Number of stages"
     199.250
               Minimum water level
                                        metre"
     199.500
               Maximum water level
                                        metre"
     199.250
               Starting water level
                                         metre"
           0
               Keep Design Data: 1 = True; 0 = False"
                  Level Discharge
                                      Volume"
               199.250
                            0.000
                                       0.000"
               199.400
                          0.02174
                                   1.00E-07"
               199.450
                          0.02510
                                      0.6000"
               199.500
                                       3.400"
                          0.02806
          1.
               HOR. ORIFICES"
               Orifice
                          Orifice
                                     Orifice Number of"
                 invert coefficie
                                    diameter
                                              orifices"
               199.250
                            0.630
                                      0.1600
                                                 1.000"
```

```
Peak outflow
                                                      c.m/sec"
                                            0.027
                                                      metre"
            Maximum level
                                          199.488
                                            2.749
                                                      c.m"
            Maximum storage
                                            1.500
                                                     hours"
            Centroidal lag
                  0.039
                            0.039
                                       0.027
                                                 0.038 c.m/sec"
            HYDROGRAPH
                          Combine
                                      1"
40
               Combine "
               Node #"
           1
               Total Area"
            Maximum flow
                                            0.064
                                                      c.m/sec"
                                          292.042
                                                      c.m"
            Hydrograph volume
                     0.039
                               0.039
                                          0.027
                                                     0.064"
40
            HYDROGRAPH Start - New Tributary"
               Start - New Tributary"
                               0.000
                                                     0.064"
                     0.039
                                          0.027
            CATCHMENT 204"
33
               Triangular SCS"
           1
           1
               Equal length"
           1
               SCS method"
         204
               Uncontrolled Area"
      66.500
               % Impervious"
       0.214
               Total Area"
       8.000
               Flow length"
       4.000
               Overland Slope"
       0.072
               Pervious Area"
       8.000
               Pervious length"
       4.000
               Pervious slope"
               Impervious Area"
       0.142
       8.000
               Impervious length"
               Impervious slope"
       4.000
       0.250
               Pervious Manning 'n'"
               Pervious SCS Curve No."
      75.000
       0.389
               Pervious Runoff coefficient"
               Pervious Ia/S coefficient"
       0.100
       8.467
               Pervious Initial abstraction"
       0.015
               Impervious Manning 'n'"
               Impervious SCS Curve No."
      98.000
       0.859
               Impervious Runoff coefficient"
               Impervious Ia/S coefficient"
       0.100
       0.518
               Impervious Initial abstraction"
                     0.087
                               0.000
                                          0.027
                                                     0.064 c.m/sec"
            Catchment 204
                                     Pervious
                                                 Impervious Total Area "
            Surface Area
                                     0.072
                                                                        hectare"
                                                 0.142
                                                            0.214
            Time of concentration
                                     4.581
                                                 0.582
                                                            1.324
                                                                        minutes"
            Time to Centroid
                                     104.363
                                                 87.621
                                                            90.727
                                                                        minutes"
                                                                        mm"
            Rainfall depth
                                     75.218
                                                 75.218
                                                            75.218
            Rainfall volume
                                                                        c.m"
                                     53.92
                                                 107.04
                                                            160.97
            Rainfall losses
                                     45.986
                                                 10.573
                                                                        mm"
                                                            22.436
                                                                        mm"
            Runoff depth
                                     29.232
                                                64.646
                                                            52.782
            Runoff volume
                                     20.96
                                                 92.00
                                                            112.95
                                                                        c.m"
            Runoff coefficient
                                     0.389
                                                 0.859
                                                            0.702
            Maximum flow
                                     0.013
                                                 0.079
                                                            0.087
                                                                        c.m/sec"
            HYDROGRAPH Add Runoff "
40
               Add Runoff "
                                          0.027
                                                     0.064"
                     0.087
                               0.087
40
            HYDROGRAPH Copy to Outflow"
               Copy to Outflow"
                     0.087
                                          0.087
                                                     0.064"
                               0.087
                                      1"
40
            HYDROGRAPH
                          Combine
```

п	6 Combine "		
II .	1 Node #"		
II .	Total Area"		
··	Maximum flow 0.	144 c.m/sec"	
··	Hydrograph volume 404.	995 c.m"	
II .	0.087 0.087 0.08	7 0.144"	
" 38	START/RE-START TOTALS 204"		
II .	3 Runoff Totals on EXIT"		
II .	Total Catchment area	0.659	hectare"
п	Total Impervious area	0.567	hectare"
п	Total % impervious	86.086"	
" 38	START/RE-START TOTALS 204"		
п	3 Runoff Totals on EXIT"		
II .	Total Catchment area	0.659	hectare"
II .	Total Impervious area	0.567	hectare"
п	Total % impervious	86.086"	
" 19	EXIT"		

Appendix B

Stormceptor Sizing Output

Imbrium® Systems ESTIMATED NET ANNUAL SEDIMENT (TSS) LOAD REDUCTION

02/25/2025

Province:	Ontario
City:	Town of Milton
Nearest Rainfall Station:	TORONTO INTL AP
Climate Station Id:	6158731
Years of Rainfall Data:	20
	•

388 Main St E Site Name:

0.12 Drainage Area (ha): 89.20 % Imperviousness:

Runoff Coefficient 'c':

Particle Size Distribution:	CA ETV
Target TSS Removal (%):	70.0

-	
Required Water Quality Runoff Volume Capture (%):	90.00
Estimated Water Quality Flow Rate (L/s):	3.12
Oil / Fuel Spill Risk Site?	Yes
Upstream Flow Control?	No
Peak Conveyance (maximum) Flow Rate (L/s):	
Influent TSS Concentration (mg/L):	100
Estimated Average Annual Sediment Load (kg/yr):	46
Estimated Average Annual Sediment Volume (L/yr):	37

Project Name:	388 Main St E
Project Number:	56022-100
Designer Name:	Jolie Nguyen
Designer Company:	MTE Consultants
Designer Email:	jnguyen@mte85.com
Designer Phone:	519-743-6500
EOR Name:	
EOR Company:	
EOR Email:	
EOR Phone:	

Net Annual Sediment
(TSS) Load Reduction
Sizing Summary

0.11.18	,
Stormceptor	TSS Removal
Model	Provided (%)
EFO4	67
EFO5	68
EFO6	69
EFO8	70
EFO10	70
EFO12	70

Recommended Stormceptor EFO Model:

Estimated Net Annual Sediment (TSS) Load Reduction (%): 70

> 90

Water Quality Runoff Volume Capture (%):

EFO8

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

▶ Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patent-pending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including high-intensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterways.

PARTICLE SIZE DISTRIBUTION (PSD)

▶ The Canadian ETV PSD shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Percent		
Size (µm)	Than	Fraction (µm)	rercent		
1000	100	500-1000	5		
500	95	250-500	5		
250	90	150-250	15		
150	75	100-150	15		
100	60	75-100	10		
75	50	50-75	5		
50	45	20-50	10		
20	35	8-20	15		
8	20	5-8	10		
5	10	2-5	5		
2	5	<2	5		

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)	
0.50	8.5	8.5	0.14	8.0	2.0	70	6.0	6.0	
1.00	20.6	29.1	0.28	17.0	4.0	70	14.5	20.5	
2.00	16.8	45.9	0.56	33.0	7.0	70	11.8	32.3	
3.00	10.8	56.7	0.84	50.0	11.0	70	7.6	39.9	
4.00	8.5	65.2	1.11	67.0	14.0	70	5.9	45.9	
5.00	6.4	71.6	1.39	84.0	18.0	70	4.5	50.4	
6.00	5.5	77.0	1.67	100.0	21.0	70	3.8	54.2	
7.00	3.9	81.0	1.95	117.0	25.0	70	2.8	57.0	
8.00	2.9	83.9	2.23	134.0	28.0	70	2.0	59.0	
9.00	2.7	86.5	2.51	150.0	32.0	70	1.9	60.9	
10.00	2.2	88.7	2.79	167.0	36.0	70	1.5	62.5	
11.00	1.0	89.7	3.06	184.0	39.0	70	0.7	63.1	
12.00	1.7	91.3	3.34	201.0	43.0	70	1.2	64.3	
13.00	1.4	92.8	3.62	217.0	46.0	70	1.0	65.3	
14.00	1.0	93.7	3.90	234.0	50.0	69	0.7	66.0	
15.00	0.3	94.0	4.18	251.0	53.0	69	0.2	66.2	
16.00	0.8	94.8	4.46	267.0	57.0	69	0.5	66.7	
17.00	0.8	95.7	4.74	284.0	.0 60.0 67		0.6	67.3	
18.00	0.2	95.8	5.02	301.0	64.0	67	0.1	67.4	
19.00	1.5	97.3	5.29	318.0	68.0	67	1.0	68.4	
20.00	0.2	97.5	5.57	334.0	71.0	66	0.1	68.5	
21.00	0.6	98.2	5.85	351.0	75.0	66	0.4	68.9	
22.00	0.0	98.2	6.13	368.0	78.0	66	0.0	68.9	
23.00	0.2	98.4	6.41	384.0	82.0	64	0.1	69.1	
24.00	0.2	98.6	6.69	401.0	85.0	64	0.2	69.2	
25.00	0.2	98.9	6.97	418.0	89.0	64	0.2	69.4	
30.00	1.1	100.0	8.36	502.0	107.0	62	0.7	70.1	
35.00	0.0	100.0	9.75	585.0	124.0	61	0.0	70.1	
40.00	0.0	100.0	11.14	669.0	142.0	59	0.0	70.1	
45.00	0.0	100.0	12.54	752.0	160.0	57	0.0	70.1	
Estimated Net Annual Sediment (TSS) Load Reduction =									

Climate Station ID: 6158731 Years of Rainfall Data: 20

INCREMENTAL AND CUMULATIVE TSS REMOVAL FOR THE RECOMMENDED STORMCEPTOR® MODEL

Maximum Pipe Diameter / Peak Conveyance

Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inlet Pipe Diameter		Max Outl	•	Peak Conveyance Flow Rate	
	(m) (ft)			(mm)	(in)	(mm)	(in)	(L/s)	(cfs)
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15
EF5 / EFO5	1.5	5	90	762	30	762	30	710	25
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60
EF10 / EFO10	3.0 10		90	1828	72	1828	72	2830	100
EF12 / EFO12	3.6	12	90	1828	72	1828	72	2830	100

SCOUR PREVENTION AND ONLINE CONFIGURATION

► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor® EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45°: The inlet pipe is 1-inch (25mm) higher than the outlet pipe. 45° - 90°: The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

Pollutant Capacity

Stormceptor Model EF / EFO Diameter			(Outlet vert to Floor)	Oil Volume		Recommended Sediment Maintenance Depth *		Maximum Sediment Volume *		Maximum Sediment Mass **		
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250
EF5 / EFO5	1.5	5	1.62	5.3	420	111	305	10	2124	75	2612	5758
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500
EF12 / EFO12	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875

^{*}Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To	
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer	
Third-party verified light liquid capture and retention for EFO version	Proven performance for fuel/oil hotspot locations	Regulator, Specifying & Design Engineer, Site Owner	
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer	
Minimal drop between inlet and outlet	Site installation ease	Contractor	
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner	

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

Table of TSS Removal vs Surface Loading Rate Based on Third-Party Test Results Stormceptor® EFO

SLR (L/min/m²)	TSS % REMOVAL						
1	70	660	42	1320	35	1980	24
30	70	690	42	1350	35	2010	24
60	67	720	41	1380	34	2040	23
90	63	750	41	1410	34	2070	23
120	61	780	41	1440	33	2100	23
150	58	810	41	1470	32	2130	22
180	56	840	41	1500	32	2160	22
210	54	870	41	1530	31	2190	22
240	53	900	41	1560	31	2220	21
270	52	930	40	1590	30	2250	21
300	51	960	40	1620	29	2280	21
330	50	990	40	1650	29	2310	21
360	49	1020	40	1680	28	2340	20
390	48	1050	39	1710	28	2370	20
420	47	1080	39	1740	27	2400	20
450	47	1110	38	1770	27	2430	20
480	46	1140	38	1800	26	2460	19
510	45	1170	37	1830	26	2490	19
540	44	1200	37	1860	26	2520	19
570	43	1230	37	1890	25	2550	19
600	42	1260	36	1920	25	2580	18
630	42	1290	36	1950	24	2600	26

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREAMENT DEVICE

PART 1 - GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators**

1.3 SUBMITTALS

- 1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.
- 1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.
- 1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 - PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The minimum sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units: 1.19 m³ sediment / 265 L oil 5 ft (1524 mm) Diameter OGS Units: 1.95 m³ sediment / 420 L oil 6 ft (1829 mm) Diameter OGS Units: 3.48 m³ sediment / 609 L oil 8 ft (2438 mm) Diameter OGS Units: 8.78 m³ sediment / 1,071 L oil 10 ft (3048 mm) Diameter OGS Units: 17.78 m³ sediment / 1,673 L oil 12 ft (3657 mm) Diameter OGS Units: 31.23 m³ sediment / 2,476 L oil

PART 3 - PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing of the OGS shall be determined by use of a minimum ten (10) years of local historical rainfall data provided by Environment Canada. Sizing shall also be determined by use of the sediment removal performance data derived from the ISO 14034 ETV third-party verified laboratory testing data from testing conducted in accordance with the Canadian ETV protocol Procedure for Laboratory Testing of Oil-Grit Separators, as follows:

- 3.2.1 Sediment removal efficiency for a given surface loading rate and its associated flow rate shall be based on sediment removal efficiency demonstrated at the seven (7) tested surface loading rates specified in the protocol, ranging 40 L/min/m² to 1400 L/min/m², and as stated in the ISO 14034 ETV Verification Statement for the OGS device.
- 3.2.2 Sediment removal efficiency for surface loading rates between 40 L/min/m² and 1400 L/min/m² shall be based on linear interpolation of data between consecutive tested surface loading rates.
- 3.2.3 Sediment removal efficiency for surface loading rates less than the lowest tested surface loading rate of 40 L/min/m² shall be assumed to be identical to the sediment removal efficiency at 40 L/min/m². No extrapolation shall be allowed that results in a sediment removal efficiency that is greater than that demonstrated at 40 L/min/m²
- 3.2.4 Sediment removal efficiency for surface loading rates greater than the highest tested surface loading rate of 1400 L/min/m² shall assume zero sediment removal for the portion of flow that exceeds 1400 L/min/m², and shall be calculated using a simple proportioning formula, with 1400 L/min/m² in the numerator and the higher surface loading rate in the denominator, and multiplying the resulting fraction times the sediment removal efficiency at 1400 L/min/m².

The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m².

3.4 LIGHT LIQUID RE-ENTRAINMENT SIMULATION TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of completed third-party Light Liquid Re-entrainment Simulation Testing in accordance with the Canadian ETV **Program's Procedure for Laboratory Testing of Oil-Grit Separators**, with results reported within the Canadian ETV or ISO 14034 ETV verification. This re-

entrainment testing is conducted with the device pre-loaded with low density polyethylene (LDPE) plastic beads as a surrogate for light liquids such as oil and fuel. Testing is conducted on the same OGS unit tested for sediment removal to assess whether light liquids captured after a spill are effectively retained at high flow rates.

3.4.1 For an OGS device to be an acceptable stormwater treatment device on a site where vehicular traffic occurs and the potential for an oil or fuel spill exists, the OGS device must have reported verified performance results of greater than 99% cumulative retention of LDPE plastic beads for the five specified surface loading rates
(ranging 200 L/min/m² to 2600 L/min/m²) in accordance with the Light Liquid Re-entrainment Simulation Testing within the Canadian ETV Program's Procedure for Laboratory Testing of Oil-Grit Separators. However, an OGS device shall not be allowed if the Light Liquid Re-entrainment Simulation Testing was performed with screening components within the OGS device that are effective at retaining the LDPE plastic beads, but would not be expected to retain light liquids such as oil and fuel.

Appendix C

Sanitary Sewer Demand

388 Main Street E

Milton, ON Project No: 56022-100 Date: February 4, 2025

By: JHN

Sanitary Demand Calculations

Excelligent Milton LTC	Population ¹	Commercial Area (m²) 2-1	Average Daily Sanitary Flow Rate ²	Peak Sanitary Flow Rate	Total Peak Sanitary Demand for Site Including Infiltration
			(L/s)	(L/s)	(L/s)
Residential Units	969		3.084	15.421	
Commercial	8	815	0.047	0.236	
Totals	977		3.131	15.657	15.845

Sanitary Demand				
Per Unit ²	275 L/d/capita 0.0032 L/s/capita			
Per Floor Space	5 L/m²/day 0.0001 L/s/capita			
Peak Factor 'M' ³	5.0			

Infiltration Allowance ⁴				
Allowable Infiltration Rate	0.286 L/s/hectare			
Site Area	0.659 hectare			
Infiltration Allowance	0.188474 L/s			

Notes

- Note 1: Population based on Site Plan for Resident Unit Count. Refer to Excelligent Milton LTC Site Plan
- Note 2: Average flow based on 275 L/ca/day per Section 2.4 in Regional Municipality of Halton Water and Wastewater Linear Design Manual (v5, October 2019).
- Note 2-1: Sanitary demand for Commercial the commercial floor area was used as per the 2012 Ontario Building Code (OBC) flow rates for a Shopping Centre to be conservative
- Note 3: Peak Factor calculated using the Babbit Formula M = 5/P^0.2, where P is the population in thousands (Max = 5.0)
- Note 4: Infiltration Allowance based on Regional Municipality of Halton Water and Wastewater Linear Design Manual (Section 3.2.4 Infiltration Allowance)

Appendix D

Domestic Water Demands

388 Main St E

Milton, ON

Project No: 56022-100 Date: Feburary 05, 2025

By: JHN

Peaking Factors ¹ :			
Avg. Day	1.0		
Max. Day	2.25		
Peak Hour	4.0		

Demand Calculations

			Final Demand		
			Avg Day	Max Day	Peak Hour
Desig	gn Population	Demand	Demand	Demand ⁵	Demand ⁶
		(L/s)	Q _{avg} (L/s)	Q _{max.day} (L/s)	Q _{peak} (L/s)
Residential Units ²	969	3.084	3.084	6.939	12.336
Commercial	8	0.025	0.025	0.056	0.100
Totals	977	3.109	3.109	6.995	12.436

Water Demand				
Average Daily Demands: 3	275 L/d/person			
Residential	0.0032 L/s/person			
Average Daily Demands: 4	275 L/d/person			
Commercial	0.0032 L/s/person			

- Note 1: Peaking factors from Table 2-2 from Regional Municipality of Halton Water and Wastewater Linear Design Manual
- Note 2: Population based on assumed population density of 1.7ppu
- Note 3: Average flow based on 275 L/ca/day per Section 2.4 in Regional Municipality of Halton Water and Wastewater Linear Design Manual (v5, October 2019).
- Note 4: Unitary Flow Rate for average daily demand from Regional Municipality of Halton Water and Wastewater Linear Design Manual (Section 2.4.2)
- Note 5: Maximum day demand calculated by dividing peak hour demand by peak hour factor and multiplying by max day factor
- Note 6: Peak hour demand calculated by multiplying average daily demand by peak hour factor