FEBRUARY 4, 2025 REVISED: AUGUST 12, 2025

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT MAIN STREET EAST, PEARL STREET & PRINCE STREET MILTON, ONTARIO

PREPARED FOR:

MIKMADA HOMES

BY

SOIL-MAT ENGINEERS & CONSULTANTS LTD.
401 GRAYS ROAD
HAMILTON, ONTARIO
L8E 2Z3

FEBRUARY 4, 2025 REVISED: AUGUST 12, 2025

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT MAIN STREET EAST, PEARL STREET & PRINCE STREET MILTON, ONTARIO

PREPARED FOR:

MIKMADA HOMES

BY

SOIL-MAT ENGINEERS & CONSULTANTS LTD.
401 GRAYS ROAD
HAMILTON, ONTARIO
L8E 2Z3

SOIL-MAT ENGINEERS & CONSULTANTS LTD.

401 Grays Road ⋅ Hamilton, ON ⋅ L8E 2Z3

PROJECT No.: SM 220141-E February 4, 2025

UPDATED: August 11, 2025

MIKMADA HOMES PO Box 220 Burlington, Ontario L7P 0N4

Attention: Adam Nesbitt President

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
PROPOSED RESIDENTIAL DEVELOPMENT
MAIN STREET EAST, PEARL STREET & PRINCE STREET
MILTON, ONTARIO

Dear Mr. Nesbitt.

1.0 EXECUTIVE SUMMARY

SOIL-MAT ENGINEERS & CONSULTANTS LTD. [SOIL-MAT ENGINEERS] were retained by MIKMADA HOMES to undertake Phase Two Environmental Site Assessment [ESA] activities on the above captioned property. Of note, our Phase Two activities were conducted in accordance with Ontario Regulation 153/04 [as amended] to support the eventual filing of a Record of Site Condition [RSC] for the property.

Further to the above, a Phase One Environmental Site Assessment was previously prepared for the subject lands, by SOIL-MAT ENGINEERS, and was utilised in determining the rationale for these Phase Two activities [refer to SOIL-MAT ENGINEERS' Report No.: SM 220141-E dated May 26, 2023].

Our Phase Two activities included the advancement of thirteen [13] boreholes on subject property to assess the impact to the soil, if any, as a result of potentially contaminating activities [PCAs] identified upon completion of the above noted Phase One ESA report. In addition, a groundwater monitoring well was installed at seven [7] of the borehole locations, upon completion of drilling activities, to facilitate the collection of groundwater samples to assess the groundwater medium. Of note, one of the seven [7] groundwater monitoring wells was installed for geotechnical purposes only and was not utilised as a sample location for these Phase Two activities.

Based on SOIL-MAT ENGINEERS' field observations and the laboratory analytical test results received in its office, SOIL-MAT ENGINEERS is pleased to offer the following:

SOIL SAMPLING SUMMARY

The laboratory analytical test results, for the submitted soil samples, revealed the following exceedances of the applicable Table 3 Residential/Parkland/Institutional Land Use Site Condition Standards [Table 3 RPI SCSs]:

- Soil sample 'BH2 SS2', revealed elevated levels of select metal parameters [specifically Barium, Lead, and Zinc] at a depth of between 0.8 to 1.4 metres below ground surface [m bgs];
- Soil sample 'BH3 SS1', revealed an elevated level of a select metal parameter [specifically Lead] at a depth of between 0 to 0.6 m bgs, and;
- Soil samples 'BH5 SS1' and 'BH5 SS2', revealed multiple elevated levels of select petroleum hydrocarbon [PHC], benzene, toluene, ethylbenzene, and xylenes [BTEX], volatile organic compound [VOC] and polycyclic aromatic hydrocarbon [PAH] parameters [specifically Naphthalene, 2-and 1-methyl Naphthalene, PHC F1 (C6 to C10), PHC F2 (C10 to C16), Benzene, Toluene, Ethylbenzene, Xylenes (Total), n Hexane] at a depth of approximately 0.1 to 1.4 m bgs.

With the exception of the above, all the other soil samples subjected to laboratory analytical testing were found to be within the applicable Table 3 RPI SCSs for the select tested contaminant of potential concern [COPC] groupings.

GROUNDWATER SAMPLING SUMMARY

The laboratory analytical test results for all of the submitted groundwater samples are all below the applicable Table 3 RPI SCSs for the select tested COPC groupings.

NEXT STEPS

As noted above, elevated levels of select Metal, PHC, BTEX, VOC and PAH parameters were identified within the soil medium on the Phase Two Property. The elevated levels of the select contaminants of concern [COCs] were identified at depths up to 1.4 m bgs. However, the analytical test results [to date] do not provide a reasonable vertical delineation for the PHC, BTEX, VOC and PAH parameters. In addition, although the lateral delineation can be defined, with the existing analytical test results, it is highly anticipated that the lateral delineation can be better defined to a significantly reduced area.

In addition to the above, it is noted that our initial planned Phase Two activities included the advancement of a borehole in APEC #3 to assess potential adverse environmental impacts associated with a former UST on the Site. However, due to site restrictions and access limitations, including a parked vehicle, a borehole was not able to be advanced in APEC #3. As such, intrusive soil and groundwater sampling to assess this specific location on the Site is required. It should be noted that APEC #3 is located within a residential property and would not affect the filing of a Record of Site Condition on the commercial properties, however, it is noted that although an RSC is not required on the residential portions of the Phase Two Property, the Town of Milton may request an RSC be filed on the entire development lands.

Given the above, it is the opinion of SOIL-MAT ENGINEERS that a Record of Site Condition to support the proposed residential development of the Site cannot be filed without further intrusive soil sampling within the areas of exceedances noted within the commercial properties.

The samples secured for analytical testing are believed to be representative of the conditions at the sample locations only. If any significant changes are noted, i.e., odours, staining etc., SOIL-MAT ENGINEERS should be contacted to reassess the environmental characteristics of the Site.

It is noted that subsurface soil conditions may be present on-site that are not typical of those presented in this Report. If future activities reveal such soils, SOIL-MAT ENGINEERS should be contacted to assess the soil conditions with respect to the proposed activity.

SOIL-MAT ENGINEERS & CONSULTANTS LTD. prepared this Report for the account of MIKMADA HOMES. The material in it reflects SOIL-MAT ENGINEERS' best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. SOIL-MAT ENGINEERS accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report.

2.0 Introduction

PROJECT No.: SM 220141-E

SOIL-MAT ENGINEERS were retained by MIKMADA HOMES undertake Phase Two ESA activities on the above captioned property. Of note, our Phase Two activities were conducted in accordance with Ontario Regulation 153/04 [as amended] to support the eventual filing of a Record of Site Condition [RSC] for the property.

Further to the above, a Phase One Environmental Site Assessment was previously prepared for the subject lands by SOIL-MAT ENGINEERS, and was utilised in determining the rationale for these Phase Two activities [refer to SOIL-MAT ENGINEERS' Report No.: SM 220141-E dated May 26, 2023].

Our fieldwork, laboratory testing and interpretation in connection with the assessment activities has been finalised and our comments and recommendations, based on our findings, are presented in the following paragraphs.

The subject property is herein referred to as the Phase Two Property and/or the Site.

2.0 (i) SITE DESCRIPTION

At the time of this Report, the Phase Two Property was comprised of six [6] adjoining parcels of land that together form an irregular shaped parcel of land located on the south side of Main Street East between Prince Street and Bruce Street in the Town of Milton, Ontario. Specifically, the Phase Two Property was comprised of the following parcels of land:

- 388 Main Street East: This portion of the Phase Two Property was occupied by a two-storey, basementless, five [5] unit, mixed commercial and residential building. The building was occupied by the following tenants:
 - Slessor Quality Automobiles / Right Choice Auto Sales, who also occupy the storage unit on the southwestern portion of the building;
 - An apartment unit [Unit 1]:
 - The World of My Baby (WOMB) [Unit 2];
 - An apartment unit [Unit 3], and;
 - Golden Fish and Chips / Sushi Yama [Unit 4].
- 17 Prince Street: This portion of the Phase Two Property was occupied by a 1¹/₂-storey dwelling, with a basement level, and a single-storey, basementless, attached garage located immediately east of the dwelling;
- 395 Pearl Street: This portion of the Phase Two Property was occupied by a 1¹/₂-storey, basementless, dwelling;
- 399 Pearl Street: This portion of the Phase Two Property was occupied by a 1¹/₂-storey dwelling, with a basement level;
- 405 Pearl Street: This portion of the Phase Two Property was occupied by a singlestorey, basementless, dwelling, and;
- 409 Pearl Street: This portion of the Phase Two Property was occupied by a singlestorey, basementless, dwelling.

The remainder of the Phase Two Property was comprised of a mixture of an asphaltic-concrete covered parking lot areas and landscaped yard areas.

The Site was bounded to the north by Main Street East, to the east by Bruce Street, to the south by Pearl Street and residential lands, and to the west by Prince Street and residential lands.

For descriptive purposes, Main Street East has been designated as having an east-west alignment.

The Phase Two Property is comprised of the following "legal" parcels of land:

- 1. PIN 24954-0139 [388 Main Street East]: "Lot 6, Block 14, Plan 9, Lot 7, Block 14, Plan 9, Lot 8, Block 14, Plan 9, Lot 9, Block 14, Plan 9, as known as Teetzel's Survey, south of Main Street; Milton; save and except Part Lot 6 taken for road widening purposes, designated as Parcel County Road 36-1, Section D-8, as in 218689":
- 2. PIN 24954-0140 [17 Prince Street]: "Part Lot 7, Block 14, Plan 9, as known as Teetzel's Survey, north of Pearl Street, as in 501695, together with 75793; Milton; Subject to Execution 93-05166, if enforceable. Subject to Execution 93-05167, if enforceable. Subject to Execution 93-05168, if enforceable";
- 3. PIN 24954-0142 [395 Pearl Street]: "Lot 6, Block 14, Plan 9, as known as Teetzel's Survey, north of Pearl Street; Milton";
- 4. PIN 24954-0143 [399 Pearl Street]: "Lot 5, Block 14, Plan 9, as known as Teetzel's Survey, north of Pearl Street; Milton";
- 5. PIN 24954-0144 [405 Pearl Street]: "Part Lot 4, Block 14, Plan 9, as known as Teetzel's Survey, north of Pearl Street, as in 518468, together with 518468; Milton; Subject to Execution 93-05166, if enforceable. Subject to Execution 93-05167, if enforceable. Subject to Execution 93-05168, if enforceable", and;
- 6. PIN 24954-0145 [409 Pearl Street]: "Part Lot 4, Block 14, Plan 9, as known as Teetzel's Survey, north of Pearl Street, as in 371921, subject to 371921; Milton."

The area of the Site is approximately 0.70 hectares in total.

2.0 (ii) PROPERTY OWNERSHIP

PROJECT No.: SM 220141-E

At the time of our referenced Phase One ESA report, the Site was owned by the following at the time of the title search:

- 1. 388 Main Street East: Slessor Motors (Milton) Inc;
- 2. 17 Prince Street: Beverly Allan Slessor;
- 3. 395 Pearl Street: Kim Slessor:
- 4. 399 Pearl Street: Milton Motor Sales Limited:
- 5. 405 Pearl Street: Beverly Allan Slessor, and;
- 6. 409 Pearl Street: Beverly Slessor.

However, as noted in the preamble of this Report, SOIL-MAT ENGINEERS were retained by MIKMADA HOMES to undertake the Phase Two activities on the Site in support of the redevelopment of the Site.

The contact information for our Client is provided below:

1. Contact Name: Mr. Adam Nesbitt

2. Mailing Address: PO Box 220, Burlington, Ontario, L7P 0N4

3. Contact e-mail: anesbitt@mikmadahomes.com

4. Contact Phone: 905-630-3435

2.0 (iii) CURRENT AND PROPOSED FUTURE USE

Current Use: Commercial and Residential

Proposed Use: Residential

Based on the current use and the proposed use of the Site, the proposed development is subject to a mandatory RSC filing.

2.0 (iv) APPLICABLE SITE CONDITION STANDARDS

The following criteria was utilised to determine the appropriate site classification and applicable soil and groundwater standards.

- Current land use: Commercial and Residential:
- Intended land use: Residential:
- Drinking Water Supply: Non-Potable Ground Water;
- On-site Soil Texture: Medium to Fine Grained Soils:
- Depth to Bedrock: Approximately 18.8 metres;
- pH of soils on the Site: Within the Applicable Generic Site Condition Standards Range;
- Surface Water Body: Not observed on-Site or within 30 metres of the Site.

Based on the above, the applicable site condition standards are the Table 3 SCSs for a Residential/Parkland/Institutional Use property use in a non-potable groundwater condition

from the Ministry of the Environment document "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environment Protection Act, (2011), hereinafter referred to as the 'Table 3 RPI Standards'.

3.0 (i) PHYSICAL SETTING

The Site is located in an area of a mixture of residential, commercial and community use lands.

There are no water bodies in whole or in part on the Phase Two Property. In addition, no surface water bodies were observed within 30 metres of the Phase Two Property.

There are no areas of natural significance located in whole or in part on the Phase Two Property.

The topography of the Site is relatively flat and level with surface water being directed towards the catch basins surrounding the Site.

3.0 (ii) PAST INVESTIGATIONS

SOIL-MAT ENGINEERS had access to the following environmental report, which was utilized as a supporting document during the completion of this Report.

1. SOIL-MAT ENGINEERS' Report No. SM 220141-E entitled, "Phase One Environmental Site Assessment, 388 Main Street East, 395-409 Pearl Street & 17 Prince Street, Milton, Ontario", dated May 26, 2023: prepared for MIKMADA HOMES.

The May 26, 2023, Phase One ESA report revealed four [4] potentially contaminating activities [PCA] on the Phase One Property, including the following:

- Information contained in the Vernon City Directory Series revealed a commercial automotive repair facility formerly operated on the '17 Prince Street' portion of the Phase One Property;
- Information contained in the Vernon City Directory Series, and the title search of the Phase One Property, revealed a commercial automotive repair facility formerly operated on the '388 Main Street East' portion of the Phase One Property. Of note, this was also confirmed via an interview with Mr. Laffin [Property Manager for the Phase One Property];
- Information provided by Mr. Laffin revealed an underground storage tank [UST] was formerly located immediately north of the dwelling on the '405 Pearl Street' portion of the Phase One Property, and:
- Information contained in available aerial photographs, topographic maps, and a Fire Insurance Plan from 1927 revealed three [3] buildings were demolished on the '388 Main Street East' portion of the Phase One Property, including on each on the western, northern and eastern portion of this property.

The neighbouring and nearby lands are comprised of a mixture of residential, commercial, and institutional use lands. The current and historic operations on properties located in the Phase One Study Area revealed six [6] PCAs that are considered likely to cause an area

of potential environmental concern [APEC] on the Phase One Property, including the following:

- Information contained in the Vernon City Directory Series revealed a commercial automotive repair facility formerly operated on the property recognised as '409 Main Street East', which is located approximately 15 metres northwest [up-gradient] of the Phase One Property;
- Information contained in the Vernon City Directory Series revealed a commercial automotive repair facility formerly operated on the property recognised as '420 Main Street East', which is located approximately 10 metres northeast [up-gradient] of the Phase One Property;
- Information contained in the EcoLog ERIS database search revealed fuel storage tanks on the property recognised as '383 Main Street East', which is located approximately 55 metres northwest [up-gradient] of the Phase One Property;
- Information contained in the Vernon City Directory Series revealed a print shop formerly operated on the property recognised as '361 Main Street East', which is located approximately 50 metres west-southwest [trans-gradient/down-gradient] of the Phase One Property;
- Our visual observations of the Phase One Study Area revealed an active print shop on the property recognised as '357 Main Street East', which is located approximately 55 metres southwest [trans-gradient/down-gradient] of the Phase One Property, and;
- Information contained in the aerial photographs, an acknowledged Record of Site Condition [RSC ID# 79919], and the EcoLog ERIS database search revealed a paperboard container manufacturing facility that formerly operated on the property recognised as '383 Main Street East', which is located approximately 55 metres northwest [up-gradient] of the Phase One Property.

The specific PCAs numbers, associated with the active and historical PCAs, include the following:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Locations of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC #1	The historic automotive repair facility on	10. Commercial Autobody Shop	On-Site	Metals, Petroleum Hydrocarbons [PHCs], Volatile	Soil and Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Locations of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
	the '17 Prince Street' portion of the Phase One Property.	[PCA A]		Organic Compounds [VOCs], Polycyclic Aromatic Hydrocarbons [PAHs], Polychlorinated Biphenyls [PCBs] and Benzene, Toluene, Ethylbenzene and Xylenes [BTEX]	
APEC #2	The historic automotive repair facility on the '388 Main Street East' portion of the Phase One Property.	10. Commercial Autobody Shop [PCA B]	On-Site	Metals, PHCs, VOCs, PAHs, PCBs, and BTEX.	Soil and Groundwater
APEC #3	To the north of the dwelling on the '405 Pearl Street' portion of the Phase One Property.	28. Gasoline and Associated Products Storage in Fixed Tanks [PCA C]	On-Site	PHCs, PAHs and BTEX	Soil and Groundwater
APEC #4	In the immediate vicinity of the three [3] former structures on the '388 Main Street East' portion of the Phase One Property.	30. Importation of Fill Material of Unknown Quality [PCA D]	On-Site	Metals, PHCs and BTEX	Soil
APEC #5	The northeastern limit of the Phase One Property.	10. Commercial Autobody Shop [PCA E]	Off-Site	Metals, PHCs, VOCs, PAHs, PCBs, and BTEX.	Soil and Groundwater
APEC #6	The eastern limit of the Phase One Property.	10. Commercial Autobody Shop [PCA F]	Off-Site	Metals, PHCs, VOCs, PAHs, PCBs, and BTEX.	Soil and Groundwater
APEC #7	The northern limit of the Phase One Property.	28. Gasoline and Associated Products Storage in	Off-Site	PHCs, PAHs, and BTEX	Soil and Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Locations of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
		Fixed Tanks [PCA G]			
APEC #8	The western limit of the Phase One Property.	31. Ink Manufacturing, Processing and Bulk Storage [PCA H]	Off-Site	Metals, PHCs, VOCs, and BTEX.	Soil
APEC #9	The western limit of the Phase One Property.	31. Ink Manufacturing, Processing and Bulk Storage [PCA I]	Off-Site	Metals, PHCs, VOCs, and BTEX.	Soil
APEC #10	The northern limit of the Phase One Property.	45. Pulp, Paper, and Paperboard Manufacturing and Processing [PCA J]	Off-Site	Metals, VOCs, PHCs and PAHs.	Soil and Groundwater

The above noted report was supervised by a Qualified Person [QP] of SOIL-MAT ENGINEERS.

SOIL-MAT ENGINEERS contacted the Town of Milton planning department to request a copy of previous environmental reports for the Site that may be on file with the City. However, the results were not available during the completion of this Report, and will be sent under a separate cover as soon as they are received in our Office.

In addition, a search of the MOE's *Brownfields Environmental Site Registry* did not reveal a previous Phase One ESA that may have been undertaken on the Site. Of note, Stantec Consulting Ltd. submitted a Record of Site Condition [RSC] to the Ministry of the Environment and Climate Change [MOE] in support of a residential development on the nearby 383 Main Street East, which is located approximately 55 metres northwest [upgradient] of the Site. The RSC was acknowledged by the MOE and filed on the Ministry's Environmental Site Registry on June 10, 2010 [RSC ID #79919].

4.0 Scope of the Investigation

4.0 (i) OVERVIEW OF SITE INVESTIGATION

Our Phase Two activities included the advancement of thirteen [13] boreholes on subject property to assess the impact to the soil, if any, as a result of potentially contaminating activities [PCAs] identified upon completion of the above noted Phase One ESA report. In addition, a groundwater monitoring well was installed at eight [8] of the borehole locations, upon completion of drilling activities, to facilitate the collection of groundwater samples to assess the groundwater medium. Of note, one of the eight [8] groundwater monitoring wells was installed for geotechnical purposes only and was not utilised as a sample location for these Phase Two activities.

Representative soil samples were secured following standard industry sampling protocols and were submitted to AGAT laboratories for laboratory analytical testing for the specific Phase Two ESA contaminants of potential concern [COPC], in this case being metals, hydride forming metals including arsenic [As], antimony [Sb], selenium [Se] and other regulated parameters [ORP] including hot water extractable boron [BHWS], cyanide [CN-], electrical conductivity [EC], hexavalent chromium [Cr (VI)], mercury [Hg] and sodium adsorption ratio [SAR], petroleum hydrocarbons [PHCs], benzene, toluene, ethylbenzene and xylenes [BTEX], volatile organic compounds [VOCs], polycyclic aromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs].

4.0 (ii) MEDIA INVESTIGATED

The purpose of the Phase Two ESA activities was to assess the soil and groundwater quality on the Phase Two Property, as related to the environmental concerns identified upon completion of our May 26, 2023 Phase One ESA.

4.0 (iii) Phase One Conceptual Site Model

The Site was comprised of six [6] adjoining parcels of land that together form an irregular shaped parcel of land located on the south side of Main Street East between Prince Street and Bruce Street in the Town of Milton, Ontario.

The Phase One Property is comprised of the following parcels of land:

- 1. 388 Main Street East, Milton, Ontario. The property identification number [PIN] is '24954-0139'. The registered owner of the Site is Slessor Motors (Milton) Inc.;
- 2. 17 Prince Street, Milton, Ontario. The PIN is '24954-0140'. The registered owner of the Site is Beverly Allan Slessor;
- 3. 395 Pearl Street, Milton, Ontario. The PIN is '24954-0142'. The registered owner of the Site is Kim Slessor;
- 4. 399 Pearl Street, Milton, Ontario. The PIN is '24954-0143'. The registered owner of the Site is Milton Motor Sales Limited;
- 5. 405 Pearl Street, Milton, Ontario. The PIN is '24954-0144'. The registered owner of the Site is Beverly Allan Slessor, and;
- 6. 409 Pearl Street, Milton, Ontario. The PIN is '24954-0145'. The registered owner of the Site is Beverly Slessor.

The information gathered during the completion of this Phase One ESA report revealed that the Site was first developed circa the 1890's as residential use lands. The first readily available visual aid for the Site is a topographic map from 1909 which illustrates the Site as residential use lands. Other visual aids, including aerial photographs from 1954, 1960, 1978, 2004, 2013, 2019, and 2022 and topographic maps from 1942, 1972, 1998, and 2021 and Fire Insurance Plans from 1880, 1893 and 1927 confirm the development timeline above.

The neighbouring and nearby lands are comprised of a mixture of residential, commercial, and institutional use lands. The current and historic operations on properties located in the Phase One Study Area revealed six [6] PCAs that are considered likely to cause an area of potential environmental concern [APEC] on the Phase One Property, including the following:

- Information contained in the Vernon City Directory Series revealed a commercial automotive repair facility formerly operated on the property recognised as '409 Main Street East', which is located approximately 15 metres northwest [upgradient] of the Phase One Property;
- Information contained in the Vernon City Directory Series revealed a commercial automotive repair facility formerly operated on the property recognised as '420 Main Street East', which is located approximately 10 metres northeast [up-gradient] of the Phase One Property;
- Information contained in the EcoLog ERIS database search revealed fuel storage tanks on the property recognised as '383 Main Street East', which is located approximately 55 metres northwest [up-gradient] of the Phase One Property;
- Information contained in the Vernon City Directory Series revealed a print shop formerly operated on the property recognised as '361 Main Street East', which is located approximately 50 metres west-southwest [trans-gradient/down-gradient] of the Phase One Property;
- Our visual observations of the Phase One Study Area revealed an active print shop on the property recognised as '357 Main Street East', which is located approximately 55 metres southwest [trans-gradient/down-gradient] of the Phase One Property, and;
- Information contained in the aerial photographs, an acknowledged Record of Site Condition [RSC ID# 79919], and the EcoLog ERIS database search revealed a paperboard container manufacturing facility that formerly operated on the property recognised as '383 Main Street East', which is located approximately 55 metres northwest [up-gradient] of the Phase One Property.

The specific PCA descriptions, and associated APECs, in connection with the identified potential environmental concerns include the following:

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Locations of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC #1	The historic automotive repair facility on the '17 Prince Street' portion of the Phase One Property.	10. Commercial Autobody Shop [PCA A]	On-Site	Metals, Petroleum Hydrocarbons [PHCs], Volatile Organic Compounds [VOCs], Polycyclic Aromatic Hydrocarbons [PAHs], Polychlorinated Biphenyls [PCBs] and Benzene, Toluene, Ethylbenzene and Xylenes [BTEX]	Soil and Groundwater
APEC #2	The historic automotive repair facility on the '388 Main Street East' portion of the Phase One Property.	10. Commercial Autobody Shop [PCA B]	On-Site	Metals, PHCs,	
APEC #3	To the north of the dwelling on the '405 Pearl Street' portion of the Phase One Property.	28. Gasoline and Associated Products Storage in Fixed Tanks [PCA C]	On-Site	PHCs, PAHs and BTEX	Soil and Groundwater
APEC #4	In the immediate vicinity of the three [3] former structures on the '388 Main Street East' portion of the Phase One Property.	30. Importation of Fill Material of Unknown Quality [PCA D]	On-Site	Metals, PHCs and BTEX	Soil
APEC #5	The northeastern limit of the Phase One Property.	10. Commercial Autobody Shop [PCA E]	Off-Site	Metals, PHCs, VOCs, PAHs, PCBs, and BTEX.	Soil and Groundwater
APEC #6	The eastern limit of the Phase One Property.	10. Commercial Autobody Shop [PCA F]	Off-Site	Metals, PHCs, VOCs, PAHs, PCBs, and BTEX.	Soil and Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Locations of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC #7	The northern limit of the Phase One Property.	28. Gasoline and Associated Products Storage in Fixed Tanks [PCA G]	Off-Site	PHCs, PAHs, and BTEX	Soil and Groundwater
APEC #8	The western limit of the Phase One Property.	31. Ink Manufacturing, Processing and Bulk Storage [PCA H]	Off-Site	Metals, PHCs, VOCs, and BTEX.	Soil
APEC #9	The western limit of the Phase One Property.	31. Ink Manufacturing, Processing and Bulk Storage [PCA I]	Off-Site	Metals, PHCs, VOCs, and BTEX.	Soil
APEC #10	The northern limit of the Phase One Property.	45. Pulp, Paper, and Paperboard Manufacturing and Processing [PCA J]	Off-Site	Metals, VOCs, PHCs and PAHs.	Soil and Groundwater

No other PCAs were identified on the Phase One Property or on the neighbouring lands or lands located within the Phase One Study Area.

4.0 (iv) DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN

PROJECT No.: SM 220141-E

Professional care was exercised during the retrieval of each sample, the placement of each sample in the appropriate sample jar, the labeling of the field samples and associated chain of custody and in the delivery of the samples to the testing laboratory.

As our standard operating procedures dictate unusual field observations, such as visual or olfactory evidence of a suspected impact, any deviation from SOIL-MAT ENGINEERS' field sampling and handling protocols or incident on the testing laboratories' side was documented either on our field borehole logs or in-house copy of the sample certificate of analysis. Of note, no deviations were recorded.

4.0 (v) IMPEDIMENTS

Our initial planned Phase Two activities included the advancement of a borehole in APEC #3 to assess potential adverse environmental impacts associated with a former UST on the Site. However, due to site restrictions and access limitations, including a parked vehicle, a borehole was not able to be advanced in APEC #3. It should be noted that APEC #3 is within a residential property and does not affect the filing of a Record of Site Condition on the commercial properties.

5.0 Investigation Methods

5.0 (i) GENERAL

There were some deviations in SOIL-MAT ENGINEERS' planned Phase Two ESA activities.

5.0 (ii) DRILLING AND EXCAVATING

The boreholes were advanced using hollow stem continuous flight auger equipment on November 11, 2024 through November 15, 2024, and June 10, 2025 under the supervision of a representative of SOIL-MAT ENGINEERS.

The physical advancement of the boreholes and installation of the groundwater monitoring wells were performed by Davis Drilling Ltd., via a truck mounted drill rig. Of note, an 'interior' borehole ['BH13'] was advanced by Kodiak Drilling in the existing structure located on 17 Prince Street. This specific borehole was advanced via a hydraulic drill rig [Big Beaver Drill Rig].

Soil samples were generally collected in 0.76m intervals from the ground surface to the termination of each borehole. After each sampling event, the split-spoon sampler was thoroughly washed with non-phosphate detergent then rinsed with water before the collection of each subsequent sample to minimise the potential for cross-contamination between samples.

5.0 (iii) SOIL SAMPLING

Soil samples were examined in the field for visual and olfactory evidence of potential impacts such as unusual staining and/or odours, etc., and were split into two separate samples [with the exception of the test pits], including the following:

- One half of the sample was sealed in sampling jars for submission to AGAT for analytical testing, and;
- One half of the sample was sealed in a plastic sampling bag for further characterisation in SOIL-MAT ENGINEERS' in-house soils laboratory.

The soil samples that were picked up at our office by AGAT were sealed in pre-cleaned wide mouth, amber glass sample jars, no head space, as provided by the laboratory. The samples were stored and transported in a cooler and kept under ice packs to minimise potential volatilisation of select parameters. New disposable sampling gloves were used for the collection of each soil sample with care given not to make contact with the samples and gloves. Dedicated sample retrieval equipment, including a stainless steel split-spoon, was used to retrieve each sample and before depositing it directly it into the AGAT Laboratories sample jar.

The samples were picked up at our office by AGAT in coolers equipped with ice packs to help maintain a temperature range between the applicable 0°C to 10°C. As reported on the chain of custody for the soil samples, the samples were picked up at our office by AGAT with average temperature of 6.6°C.

5.0 (iv) FIELD SCREENING MEASUREMENTS

All of the Phase Two ESA soil samples were examined in the field for visual and olfactory evidence of potential PHC impact(s), such as unusual staining and/or odours, etc.

An RKI Eagle was utilised during the collection of the soil samples. The results of the RKI Eagle readings are summarized in the table below:

Sample	Hexene Reading (ppm)			
BH5 SS3	470ppm			
BH5 SS4	600ppm			
* = submitted for PHC analytical testing				

It is noted that all remaining samples recovered were field screened with the RKI Eagle and were recorded with values of 0ppm.

5.0 (v) GROUND WATER: MONITORING WELL INSTALLATION

A 50 millimeter groundwater monitoring well was installed at Borehole Nos. BH1, BH4, BH5, BH6, BH8, BH10, BH12, and BH13 upon the completion of drilling activities. The monitoring wells were installed to a depth of approximately 7.6 meters below ground surface, with a screened interval in the lower 3.0 metres. The groundwater monitoring wells were installed in accordance with *Ontario Regulation 903 [Water Wells]* under the Ontario Water Resources Act.

A water well record was submitted to the Ministry of the Environment, Conservation and Parks [MOE] upon completion of drilling activities. It is the responsibility of the Site owner to ensure the groundwater monitoring well is maintained in an appropriate, safe and secure condition as per the Regulation and to arrange for the monitoring well to be abandoned in accordance with the Regulation when it is no longer in use.

The monitoring well installation details are summarized in the table below.

Monitoring Well	Bottom of Monitoring Well [m bgs]	Bottom of the Borehole Elevation [m]	Screen Length [m]	Screen Interval [m bgs]	Filter Pack [m bgs]	Bentoni te Plug [m bgs]	Ground Surface Elevation [m]
MW1	7.62	192.10	3.05	4.57 - 7.62	4.2 - 7.6	0 - 4.2	199.72
MW4	7.62	192.31	3.05	4.57 – 7.62	4.2 - 7.6	0 – 4.2	199.93
MW5	7.62	191.94	3.05	4.57 – 7.62	4.2 - 7.6	0 – 4.2	199.56
MW6	16.8	183.22	3.05	13.7 – 16.7	13.4 – 16.7	0 – 13.4	200.02
MW8	7.62	192.27	3.05	4.57 – 7.62	4.2 - 7.6	0 – 4.2	199.89
MW10	7.62	192.38	3.05	4.57 – 7.62	4.2 - 7.6	0 – 4.2	200.00
MW12	7.62	192.18	3.05	4.57 – 7.62	4.2 - 7.6	0 – 4.2	199.80
MW13	7.62	192.26	3.05	4.57 – 7.62	4.2 - 7.6	0 – 4.2	199.88

Of note, the groundwater monitoring well installed at borehole location 'BH6', identified as "MW6" above, was installed for geotechnical purposes only and was not utilised as a sample location as part of our planned Phase Two activities.

5.0 (vi) GROUND WATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS

An Oil / Water interface probe was utilized during the monitoring and collection of the groundwater sample. Of note, a light non-aqueous phase liquid [LNAPL] layer was not identified in any of the on-site monitoring wells.

The samples were picked up at our office by AGAT in coolers equipped with ice packs to help maintain a temperature range between the applicable 0°C to 10°C. As reported on the chain of custody for the soil samples, the samples were picked up at our office by AGAT with average temperature of 4.5°C.

5.0 (vii) GROUND WATER: SAMPLING

Three [3] well volumes were purged from the groundwater monitoring wells prior to the collection of the groundwater sample. The monitoring wells were then allowed to recharge back to recorded static groundwater level prior to the physical sample collection.

The monitoring wells installed on the Site during this Phase Two ESA were equipped with dedicated sampling equipment, including a 25 millimetre water bailer for sample collection for the PHC and BTEX parameters.

A low flow bladder pump was utilised for the collection of the groundwater sample for the remaining COPC groupings as the sample was subjected to laboratory analytical testing for VOCs.

Professional care was exercised during the retrieval of each sample, the placement of each sample in the appropriate sample jar, the labeling of the field samples and associated chain of custody and in the delivery of the samples to the testing laboratory.

As our standard operating procedures dictate unusual field observations, such as visual or olfactory evidence of a suspected impact, a deviation from SOIL-MAT ENGINEERS' field sampling and handling protocols or incident on the testing laboratories' side was documented either on our field borehole logs or in-house copy of the sample certificate of analysis.

There were no deviations recorded during the Phase Two ESA sampling activities.

5.0 (viii) SEDIMENT SAMPLING

Sediment sampling was not conducted as part of the Phase Two ESA activities as the medium investigated was limited to the soil and groundwater medium.

5.0 (ix) ANALYTICAL TESTING

All laboratory analytical work was performed by AGAT Laboratories [AGAT] in Mississauga, Ontario.

AGAT is a member of the Canadian Association for Laboratory Accreditation [CALA] and meets the requirements of Section 47 of the Record of Site Condition Regulation.

5.0 (x) RESIDUAL MANAGEMENT PROCEDURES

Soil cuttings produced from the physical drilling activities were stored on-site in steel 45-gallon drums and transported off-site by Davis Drilling Ltd., at the time of drilling.

Purged groundwater was stored on-site in plastic 5-gallon pails until the results of the laboratory analytical testing demonstrated that the groundwater met the applicable SCS at which time the groundwater was discarded across the surface soil in the vicinity of each groundwater sampling point.

5.0 (xi) ELEVATION SURVEYING

All boreholes and groundwater monitoring wells were surveyed by a staff member of SOIL-MAT ENGINEERS to facilitate site relative survey information. A geodetic benchmark, described as the double catch basin [DCB] located on the north side of the Site on Bruce Street, was utilized as a survey reference point with an elevation of 199.38 m.

5.0 (xii) QUALITY ASSURANCE AND QUALITY CONTROL MEASURES

QA/QC was maintained during the field program through equipment decontamination and sampling procedures, as outlined in the "MOE Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (May, 1996).

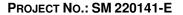
Standard QA/QC protocols were followed for bottle preparation, sample collection and transportation, as outlined by MOE guidance documents, including the MOE's 2011 "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act".

In addition to these field-based measures, extensive QA/QC procedures were carried out by the analytical laboratories, including:

- Lab blanks;
- Spikes;
- Matrix blanks; and
- Instrument blanks and assessments of instrument tuning and performance.

Based on the evaluation of the sampling and analytical procedures used, the following data quality statements can be made:

- The data are adequate for the RSC objectives and approach utilized; and,
- Soil analytical data were of an acceptable quality for comparison to 2011 MOE Table 3 SCSs as defined by O.Reg.153/04, as amended, for current investigations.



6.0 REVIEW AND EVALUATION

6.0 (i) GEOLOGY

SOIL-MAT ENGINEERS' Phase Two ESA revealed the following Site stratigraphy:

- TOPSOIL: A surficial veneer of topsoil approximately 250 millimetres in thickness was encountered at Borehole No. 14. It is noted that the depth of topsoil may vary across the site and from the depth encountered at the borehole location, and that a conservative approach should be taken in estimating topsoil quantities across the site. It is also noted that the term 'topsoil' has been used from a geotechnical point of view, and does not necessarily reflect its nutrient content or ability to support plant life.
- PAVEMENT STRUCTURE: All Boreholes, with the exception of Borehole Nos.: BH13 and BH14 were advanced through the pavement structure of the existing driveway/parking lot which was found to consist of approximately 30 to 150 millimetres of asphaltic concrete overlying 100 to 350 millimetres of compact granular base.
- CONCRETE FLOOR SLAB STRUCTURE: Borehole No. 13 was advanced through the
 concrete floor slab of the existing autobody garage and repair shop located at 17
 Prince Street, and was found to consist of approximately 150 millimetres of concrete
 overlying approximately 150 millimetres of compact granular base.
- SAND FILL: Sand fill material was encountered beneath the pavement structure in Borehole No. 9. The granular material was reddish brown in colour, containing traces of silt and gravel, with occasional concrete debris, and was generally found to be in a compact state. The sandy fill material was proven to a depth of approximately 0.9 metres below the existing ground surface at Borehole No. 9.
- SILTY CLAY/ CLAYEY SILT FILL: Silty clay/clayey silt fill material was encountered beneath the pavement or concrete slab at the majority of borehole locations. The silty clay/clayey silt fill material was brown to reddish brown and grey in colour, typically containing trace to some sand and gravel, occasional to frequent organic inclusions and staining, occasional deposits of sand, gravel, and cobbles, and was generally found to be soft to hard in terms of consistency. The fill encountered was proven to depths of between approximately 1.1 to 2.8 metres below the existing ground surface, however fill material of greater depths may be present across the site. It is noted that the fill material encountered appeared consistent with the composition of the soils native to the area. As such, material identified as fill may be weathered/disturbed native soils. Conversely, material identified as native soils, may in fact be compacted fill material, relatively free of organics and construction debris.
- SANDY CLAYEY SILT: Native sandy clayey silt soil was beneath the topsoil and/or fill deposits at all of the borehole locations. The sandy clayey silt was brown to reddish brown in colour, transitioning to grey in colour at depths of approximately 4 metres below the existing ground surface. The native material contained traces of to some gravel, exhibited a reworked/weathered appearance in the upper levels of Borehole No. 14, and was generally stiff to hard in consistency. The fine-grained to cohesive native soil was proven to termination/practical auger refusal at depths of between approximately 3.4 and 21.8 metres below the existing ground surface.

- SAND AND GRAVEL: A layer of native sand and gravel material was encountered within the native sandy clayey silt in Borehole No. 11. The layer was encountered at a depth of approximately 8 metres, and is estimated to be perhaps 2 to 3 metres in thickness, possibly greater. The granular material was grey in colour, containing traces of to some silt and clay, occasional cobbles, and was generally found to be in a compact to dense state. At this specific location, the native sand and gravel was encountered to a depth of approximately 9.4 metres below the existing ground surface. Regardless, similar sand and gravel deposits may be present at varying depths, and of varying thickness, across the site, and should be anticipated.
- QUEENSTON SHALE: The Queenston shale bedrock was encountered beneath the native sandy clayey silt in Borehole No. 6 at a depth of approximately 18.8 metres, and inferred from auger and refusal beneath the native sandy clayey silt in Borehole Nos. 2, and 14, at depths of approximately 18.3 and 18.5 metres, respectively. The Queenston Shale is generally red in colour with occasional more resistant grey layers, highly weathered in the upper levels, becoming sounder with depth.
- GROUNDWATER: The depth to the groundwater table is anticipated to be approximately 3.13 to 5.07 metres below ground surface based on groundwater readings secured from the monitoring wells installed on the Site. Seasonal fluctuations to this level should be expected.

6.0 (ii) GROUND WATER: ELEVATIONS AND FLOW DIRECTIONS

A groundwater monitoring well was installed at Borehole Nos. BH1, BH4, BH5, BH6, BH8, BH10, BH12, and BH13 for future monitoring of the static groundwater level and to facilitate the collection of groundwater samples for laboratory analytical testing. Of note, the groundwater monitoring well installed at borehole location 'BH6', identified as "MW6" above, was installed for geotechnical purposes only and was not utilised as a sample location as part of our planned Phase Two activities.

The monitoring installation details are summarized in the table below:

TABLE A
SUMMARY OF GROUNDWATER LEVELS

Groundwater Monitoring	Surface Elevation	November 27, 2024		December 5, 2024		July 18, 2025		July 30, 2025	
Well	(m)	Depth [m]	Elev. [m]	Depth [m]	Elev. [m]	Depth [m]	Elev. [m]	Depth [m]	Elev. [m]
MW1	199.72	3.38	196.34	3.51	196.21				
MW4	199.93	3.44	196.49	3.13	196.80				
MW5	199.56	5.46	194.10	5.46	194.10				
MW6	200.02	6.71	193.31	6.79	193.23				
MW8	199.89	4.57	195.32	4.55	195.34				
MW10	200.00	5.07	194.93	5.25	194.75				
MW12	199.80	3.37	196.43	3.51	196.29				
MW13	199.88					5.31	194.57	5.62	194.26

Based on the water level readings, our observations during the Phase Two activities, and our experience in the area, etc. the static groundwater level is estimated at a depth of approximately 3.13 to 5.07 metres below the ground surface and would be expected to fluctuate seasonally. Regardless, some shallower perched deposits of water may be encountered and should be anticipated, especially during the 'wet' times of the year.

The monitoring well location is illustrated on Drawing No. 2 in Appendix 'B'.

6.0 (iii) GROUND WATER: HYDRAULIC GRADIENTS

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded during the Phase Two activities. Based on these recordings, the distance between the groundwater monitoring wells and the depth of well installation the horizontal hydraulic gradient was calculated as 0.00340, as follows:

Horizontal hydraulic gradient $= \Delta h/\Delta L$ $= (MW \ 1 \ groundwater elevation in metres - MW \ 5 \ groundwater elevation in metres)/ (Distance between MW \ 1 \ and MW \ 5 in metres) <math>= (199.72 \ metres - 199.56 \ metres)/47 \ metres$ $= 0.16 \ metres/47 \ metres$ = 0.00340

6.0 (iv) MEDIUM TO FINE SOIL TEXTURE

SOIL-MAT ENGINEERS' conducted hydrometer testing on six [6] recovered samples. The result of the hydrometer indicates that the surface and subsurface soil consists primarily of a brown silty sandy clay with traces of gravel. Given the above, the soil has more than 50% finer than the $75~\mu m$ sieve, and as such is classified as medium to fine textured.

6.0 (v) SOIL: FIELD SCREENING

SOIL-MAT ENGINEERS did not observe any visual or olfactory evidence that suggested a new COPC grouping should be considered during the assessment activities.

6.0 (vi) SOIL QUALITY

In total, twenty seven [27] soil samples, including three [3] duplicate samples, were secured from the Site to assess potential adverse impact(s) on the Site as a result of the PCAs identified in our Phase One ESA report.

The secured soil samples were submitted to AGAT for laboratory analytical testing as described in the summary table below:

SUMMARY OF TESTED SOIL SAMPLES

Sample ID	Depth [m bgs]	Laboratory Analysis	Soil Description
BH1 SS2 [PCA E, F, G, C APEC 5, 6, 7, 1		Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill

Sample ID	Depth [m bgs]	Laboratory Analysis	Soil Description
BH1 SS6 [PCA E, F, G, J / APEC 5, 6, 7, 10]	3.8 – 4.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Sandy Clayey Silt
BH2 SS2 [PCA D / APEC 4]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill
BH2 SS3 [PCA D / APEC 4]	1.5 – 2.1	Metals, ORPs, PHCs, BTEX	Sandy Clayey Silt
BH3 SS1 [PCA D / APEC 4]	0 – 0.6	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill
BH3 SS2 [PCA D / APEC 4]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill
BH4 SS2 [PCA F / APEC 6]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill
BH4 SS6 [PCA F / APEC 6]	3.8 – 4.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Sandy Clayey Silt
BH5 SS1 [PCA E, G, J / APEC 5, 7, 10]	0 – 0.6	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	Silty Clay/ Clayey Silt Fill
BH5 SS2 [PCA E, G, J / APEC 5, 7, 10]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	Silty Clay/ Clayey Silt Fill
BH5 SS5 [PCA E, G, J / APEC 5, 7, 10]	3.1 – 3.7	Metals, ORPs, PHCs, BTEX, VOCs	Sandy Clayey Silt
BH8 SS1 [PCA G, H, I, J / APEC 7, 8, 9, 10]	0 – 0.6	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	Silty Clay/ Clayey Silt Fill
BH8 SS7 [PCA G, H, I, J / APEC 7, 8, 9, 10]	4.6 – 5.2	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	Sandy Clayey Silt
BH9 SS1 [PCA D, G, J / APEC 4, 7, 10]	0 – 0.6	Metals, ORPs, PHCs, BTEX	Sand Fill
BH9 SS3 [PCA D, G, J / APEC 4, 7, 10]	1.5 – 2.1	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill
BH10 SS2 [PCA B / APEC 2]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill
BH10 SS6 [PCA B / APEC 2]	3.8 – 4.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Sandy Clayey Silt
BH11 SS2 [PCA B / APEC 2]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill
BH11 SS6 [PCA B / APEC 2]	3.8 – 4.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Sandy Clayey Silt
BH12 SS1 [PCA H, I / APEC 8, 9]	0 – 0.6	Metals, ORPs, PHCs, BTEX, VOCs	Silty Clay/ Clayey Silt Fill
BH12 SS7 [PCA H, I / APEC 8, 9]	4.6 – 5.2	Metals, ORPs, PHCs, BTEX, VOCs	Sandy Clayey Silt
BH13 SS1 [PCA A / APEC 1]	0 – 0.6	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill
BH13 SS2 [PCA A / APEC 1]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill
BH13 SS5 [PCA A / APEC 1]	4.6 – 5.2	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill

Sample ID	Depth [m bgs]	Laboratory Analysis	Soil Description
Dup 1 [BH9 SS3] [PCA D, G, J / APEC 4, 7, 10]	1.5 – 2.1	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill
Dup 2 [BH2 SS3] [PCA D / APEC 4]	1.5 – 2.1	Metals, ORPs, PHCs, BTEX	Sandy Clayey Silt
Dup 3 [BH13 SS2] [PCA A / APEC 1]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill

Notes: Metals including hydrides = As, Sb, Se, ORPs = BHWS, CN, EC, Cr (VI), Hg and SAR, PHCs = Petroleum Hydrocarbons, BTEX = Benzene, Toluene, Ethylbenzene, and Xylene Mixture, VOCs = Volatile Organic Compounds, PAHs = Polycyclic Aromatic Hydrocarbons, PCBs = Polychlorinated Biphenyls

The laboratory analytical test results for the submitted soil samples are summarised below:

SUMMARY OF SOIL SAMPLE TEST RESULTS

Sample ID	Depth [m bgs]	Laboratory Analysis	Soil Description	Table 3 RPI Exceedances
BH1 SS2 [PCA E, F, G, J / APEC 5, 6, 7, 10]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH1 SS6 [PCA E, F, G, J / APEC 5, 6, 7, 10]	3.8 – 4.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Sandy Clayey Silt	No exceedances reported
BH2 SS2 [PCA D / APEC 4]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill	Exceeds for: Barium – 622 μg/g vs 390 μg/g Lead – 165 μg/g vs 120 μg/g Zinc – 2100 μg/g vs 340 μg/g
BH2 SS3 [PCA D / APEC 4]	1.5 – 2.1	Metals, ORPs, PHCs, BTEX	Sandy Clayey Silt	No exceedances reported
BH3 SS1 [PCA D / APEC 4]	0 – 0.6	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill	Exceeds for: Lead – 217 μg/g vs 120 μg/g
BH3 SS2 [PCA D / APEC 4]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH4 SS2 [PCA F / APEC 6]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH4 SS6 [PCA F / APEC 6]	3.8 – 4.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Sandy Clayey Silt	No exceedances reported
BH5 SS1 [PCA E, G, J / APEC 5, 7, 10]	0 – 0.6	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	Silty Clay/ Clayey Silt Fill	Exceeds for: EC – 1.22 mS/cm vs 0.7 mS/cm SAR – 7.46 μg/g vs 5 μg/g Naphthalene – 5.29 μg/g vs 0.75 μg/g 2-and 1-methyl Naphthalene – 4.12 μg/g vs 3.4 μg/g PHC F1 – 3230 μg/g vs 65 μg/g PHC F2 – 701 μg/g vs 150 μg/g Benzene – 20.2 μg/g vs 0.17 μg/g Toluene – 76.0 μg/g vs 6 μg/g Ethylbenzene – 118 μg/g vs 15 μg/g Xylenes (Total) – 579 μg/g vs 25 μg/g n Hexane – 117 μg/g vs 34 μg/g

Sample ID	Depth [m bgs]	Laboratory Analysis	Soil Description	Table 3 RPI Exceedances
BH5 SS2 [PCA E, G, J / APEC 5, 7, 10]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	Silty Clay/ Clayey Silt Fill	Exceeds for: EC – 1.04 mS/cm vs 0.7 mS/cm SAR – 6.62 μg/g vs 5 μg/g Naphthalene – 5.76 μg/g vs 0.75 μg/g 2-and 1-methyl Naphthalene – 4.77 μg/g vs 3.4 μg/g PHC F1 – 3290 μg/g vs 65 μg/g PHC F2 – 384 μg/g vs 150 μg/g Benzene – 25.8 μg/g vs 0.17 μg/g Toluene – 145 μg/g vs 6 μg/g Ethylbenzene – 139 μg/g vs 118 μg/g vs 15 μg/g Xylenes (Total) – 716 μg/g vs 25 μg/g n Hexane – 114 μg/g vs 34 μg/g
BH5 SS5 [PCA E, G, J / APEC 5, 7, 10]	3.1 – 3.7	Metals, ORPs, PHCs, BTEX, VOCs	Sandy Clayey Silt	No exceedances reported
BH8 SS1 [PCA G, H, I, J / APEC 7, 8, 9, 10]	0 – 0.6	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH8 SS7 [PCA G, H, I, J / APEC 7, 8, 9, 10]	4.6 – 5.2	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	Sandy Clayey Silt	No exceedances reported
BH9 SS1 [PCA D, G, J / APEC 4, 7, 10]	0 – 0.6	Metals, ORPs, PHCs, BTEX	Sand Fill	No exceedances reported
BH9 SS3 [PCA D, G, J / APEC 4, 7, 10]	1.5 – 2.1	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH10 SS2 [PCA B / APEC 2]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH10 SS6 [PCA B / APEC 2]	3.8 – 4.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Sandy Clayey Silt	No exceedances reported
BH11 SS2 [PCA B / APEC 2]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH11 SS6 [PCA B / APEC 2]	3.8 – 4.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Sandy Clayey Silt	No exceedances reported
BH12 SS1 [PCA H, I / APEC 8, 9]	0 – 0.6	Metals, ORPs, PHCs, BTEX, VOCs	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH12 SS7 [PCA H, I / APEC 8, 9]	4.6 – 5.2	Metals, ORPs, PHCs, BTEX, VOCs	Sandy Clayey Silt	No exceedances reported
BH13 SS1 [PCA A / APEC 1]	0 – 0.6	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH13 SS2 [PCA A / APEC 1]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill	No exceedances reported
BH13 SS5 [PCA A / APEC 1]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill	No exceedances reported

Sample ID	Depth [m bgs]	Laboratory Analysis	Soil Description	Table 3 RPI Exceedances
Dup 1 [BH9 SS3] [PCA D, G, J / APEC 4, 7, 10]	1.5 – 2.1	Metals, ORPs, PHCs, BTEX	Silty Clay/ Clayey Silt Fill	No exceedances reported
Dup 2 [BH2 SS3] [PCA D / APEC 4]	1.5 – 2.1	Metals, ORPs, PHCs, BTEX	Sandy Clayey Silt	No exceedances reported
Dup 3 [BH13 SS2] [PCA A / APEC 1]	0.8 – 1.4	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	Silty Clay/ Clayey Silt Fill	No exceedances reported

Notes: Metals including hydrides = As, Sb, Se, ORPs = BHWS, CN, EC, Cr (VI), Hg and SAR, PHCs = Petroleum Hydrocarbons, BTEX = Benzene, Toluene, Ethylbenzene, and Xylene Mixture, VOCs = Volatile Organic Compounds, PAHs = Polycyclic Aromatic Hydrocarbons, PCBs = Polychlorinated Biphenyls

The laboratory analytical test results, for the submitted soil samples, revealed the following exceedances of the applicable Table 3 SCSs:

- Soil sample 'BH2 SS2', revealed elevated levels of select metal parameters [specifically Barium, Lead, and Zinc] at a depth of between 0.8 to 1.4 metres below ground surface [m bgs];
- Soil sample 'BH3 SS1', revealed an elevated level of a select metal parameter [specifically Lead] at a depth of between 0 to 0.6 m bgs, and;
- Soil samples 'BH5 SS1' and 'BH5 SS2', revealed multiple elevated levels of select petroleum hydrocarbon [PHC], benzene, toluene, ethylbenzene, and xylenes [BTEX], volatile organic compound [VOC] and polycyclic aromatic hydrocarbon [PAH] parameters [specifically Naphthalene, 2-and 1-methyl Naphthalene, PHC F1 (C6 to C10), PHC F2 (C10 to C16), Benzene, Toluene, Ethylbenzene, Xylenes (Total), n Hexane] at a depth of approximately 0.1 to 1.4 m bgs, and;
- Elevated levels of electrical conductivity [EC] and sodium adsorption ratio [SAR] were found to exceed the Table 3 RPI SCSs at Borehole No.: BH5 at a depth of 0 − 1.4 m bgs. However, Section 49.1 of Regulation 153/04 [as amended], provides the following exemption: "If an applicable site condition standard is exceeded at a property solely because of one of the following reasons, the applicable site condition standard is deemed not to be exceeded for the purpose of Part XV.1 of the Act:
 - The qualified person has determined, based on a phase one environmental site assessment or a phase two environmental site assessment, that a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both."

Given the historical use of de-icing salts on the Site as a commercial parking lot and use on the adjacent municipal roadways, it is the opinion of the SOIL-MAT ENGINEERS that the elevated levels of the noted parameters are a direct result of a substance applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both. As such, EC and SAR are not considered contaminants on the Site. In addition, the soil samples with reported elevated levels of EC and/or SAR above the Table 3 RPI SCSs are not considered to exceed the Standards.

With the exception of the above, all the other soil samples subjected to laboratory analytical testing were found to be within the applicable Table 3 RPI SCSs for the select tested COPC groupings.

The Phase Two Property, borehole locations and laboratory analytical test results are illustrated on Drawing Nos. 3A-G, and 4A-F in Appendix 'B'. SOIL-MAT ENGINEERS' borehole logs are also included in Appendix 'B' for reference.

The AGAT Certificate of Analysis is included in Appendix 'B' for reference.

6.0 (vii) GROUND WATER QUALITY

In total, seven [7] groundwater samples, including one duplicate sample, was secured from the Site to assess potential adverse impact(s) on the Site as a result of the on-site PCA identified in our Phase One ESA report.

The secured groundwater sample was submitted to AGAT for laboratory analytical testing as described in the summary table below:

Sample ID	Laboratory Analysis		
MW1-S1 [PCA E, F, G, J / APEC 5, 6, 7, 10]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs		
MW4-S1 [PCA F / APEC 6]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs		
MW5-S1 [PCA E, G, J / APEC 5, 7, 10]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs		
MW8-S1 [PCA G, H, I, J / APEC 7, 8, 9, 10]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs		
MW10-S1 [PCA B / APEC 2]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs		
MW12-S1 [PCA H, I / APEC 8, 9]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs		
BH13 SS5 [PCA A / APEC 1]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs		
Dup 1 [MW8-S1] [PCA G, H, I, J / APEC 7, 8, 9, 10]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs		

Notes: Metals including hydrides = As, Sb, Se, ORPs = BHWS, CN, Sodium, Cr (VI), Hg and Chloride, PHCs = Petroleum Hydrocarbons, BTEX = Benzene, Toluene, Ethylbenzene, and Xylene Mixture, VOCs = Volatile Organic Compounds, PAHs = Polycyclic Aromatic Hydrocarbons, PCBs = Polychlorinated Biphenyls

The laboratory analytical test results for the submitted water sample are summarised below:

SUMMARY OF ANALYTICAL TESTING – WATER [TABLE 3 NPGW]

Sample ID	Laboratory Analysis	Table 3 NPGW Exceedances
MW1-S1 [PCA E, F, G, J / APEC 5, 6, 7, 10]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	No exceedances reported
MW4-S1 [PCA F / APEC 6]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	No exceedances reported
MW5-S1 [PCA E, G, J / APEC 5, 7, 10]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	No exceedances reported
MW8-S1 [PCA G, H, I, J / APEC 7, 8, 9, 10]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	No exceedances reported

Sample ID	Laboratory Analysis	Table 3 NPGW Exceedances
MW10-S1 [PCA B / APEC 2]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	No exceedances reported
MW12-S1 [PCA H, I / APEC 8, 9]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	No exceedances reported
BH13 SS5 [PCA A / APEC 1]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs, PCBs	No exceedances reported
Dup 1 [MW8-S1] [PCA G, H, I, J / APEC 7, 8, 9, 10]	Metals, ORPs, PHCs, BTEX, VOCs, PAHs	No exceedances reported

Notes: Metals including hydrides = As, Sb, Se, ORPs = BHWS, CN, Sodium, Cr (VI), Hg and Chloride, PHCs = Petroleum Hydrocarbons, BTEX = Benzene, Toluene, Ethylbenzene, and Xylene Mixture, VOCs = Volatile Organic Compounds, PAHs = Polycyclic Aromatic Hydrocarbons, PCBs = Polychlorinated Biphenyls

The laboratory analytical test results for the submitted groundwater samples indicate the following:

 The laboratory analytical test results for all of the submitted groundwater samples are all below the applicable Table 3 RPI SCSs for the select tested COPC groupings.

The Phase Two Property, groundwater monitoring well locations and laboratory analytical test results are illustrated on Drawing Nos. 3A-G, and 4A-F in Appendix 'B'

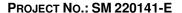
The AGAT certificate of analysis for the groundwater analytical data is contained in Appendix 'D' for reference.

6.0 (viii) SEDIMENT QUALITY

PROJECT No.: SM 220141-E

Sediment sampling was not conducted as part of the planned Phase Two activities.

6.0 (ix) QUALITY ASSURANCE AND QUALITY CONTROL RESULTS


QA/QC was maintained during the field program through equipment decontamination and sampling procedures, as outlined in the "MOE Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (May, 1996).

Standard QA/QC protocols were followed for bottle preparation, sample collection and transportation, as outlined by MOE guidance documents, including the MOE's 2011 "Protocol for Analytical Methods Used in the Assessment of Properties Under Part XV.1 of the Environmental Protection Act".

In addition to these field-based measures, extensive QA/QC procedures were carried out by the analytical laboratories, including:

- Lab blanks:
- Spikes;
- Matrix blanks; and
- Instrument blanks and assessments of instrument tuning and performance.

Based on the evaluation of the sampling and analytical procedures used, the following data quality statements can be made:

- The data is adequate for the RSC objectives and approach utilized; and,
- Soil analytical data were of an acceptable quality for comparison to Table 9 SCS as defined by *O.Reg.153/04*, as amended, for current investigations.

No deviations from the QA/QC protocols were noted during the completion of the Phase Two ESA fieldwork.

6.0 (x) Phase Two Conceptual Site Model

SOIL-MAT ENGINEERS' has not prepared a Phase Two CSM as part of this Phase Two ESA as additional intrusive soil sampling is recommended for the Site. However, a Phase Two CSM will be prepared to support the filing of an RSC once the Phase Two Property has either been subjected to a remedial action plan or some level of risk assessment [RA] activities or a combination of both, etc.

7.0 CONCLUSIONS

A description of the staff members associated with the completion of the Supplemental Phase Two ESA activities is contained in Appendix 'D' of this Report. The ESA activities were supervised by Mr. Steve Sears, P. Eng., QP_{ESA} , who is a Qualified Person for the undertaking of ESA activities.

Based on Soil-Mat Engineers' field observations and the laboratory analytical test results received in its office, Soil-Mat Engineers is pleased to offer the following:

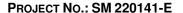
Based on SOIL-MAT ENGINEERS' field observations and the laboratory analytical test results received in its office, SOIL-MAT ENGINEERS is pleased to offer the following:

SOIL SAMPLING SUMMARY

The laboratory analytical test results, for the submitted soil samples, revealed the following exceedances of the applicable Table 3 Residential/Parkland/Institutional Land Use Site Condition Standards [Table 3 RPI SCSs]:

- Soil sample 'BH2 SS2', revealed elevated levels of select metal parameters [specifically Barium, Lead, and Zinc] at a depth of between 0.8 to 1.4 m bgs;
- Soil sample 'BH3 SS1', revealed an elevated level of a select metal parameter [specifically Lead] at a depth of between 0 to 0.6 m bgs, and;
- Soil samples 'BH5 SS1' and 'BH5 SS2', revealed multiple elevated levels of select PHC, BTEX, VOC and PAH parameters [specifically Naphthalene, 2-and 1-methyl Naphthalene, PHC F1 (C6 to C10), PHC F2 (C10 to C16), Benzene, Toluene, Ethylbenzene, Xylenes (Total), n Hexane] at a depth of approximately 0.1 to 1.4 m bgs.

With the exception of the above, all the other soil samples subjected to laboratory analytical testing were found to be within the applicable Table 3 RPI SCSs for the select tested COPC groupings.


GROUNDWATER SAMPLING SUMMARY

The laboratory analytical test results for all of the submitted groundwater samples are all below the applicable Table 3 RPI SCSs for the select tested COPC groupings.

NEXT STEPS

As noted above, elevated levels of select Metal, PHC, BTEX, VOC and PAH parameters were identified within the soil medium on the Phase Two Property. The elevated levels of the select COCs were identified at depths up to of 1.4 m bgs. However, the analytical test results [to date] do not provide a reasonable vertical delineation for the PHC, BTEX, VOC and PAH parameters. In addition, although the lateral delineation can be defined, with the existing analytical test results, it is highly anticipated that the lateral delineation can be better defined to a significantly reduced area.

In addition to the above, our initial planned Phase Two activities included the advancement of a borehole in APEC #3 to assess potential adverse environmental impacts associated

with a former UST on the Site. However, due to site restrictions and access limitations, including a parked vehicle, a borehole was not able to be advanced in APEC #3. As such, intrusive soil and groundwater sampling to assess this specific location on the Site is required. It should be noted that APEC #3 is located within a residential property and would not affect the filing of a Record of Site Condition on the commercial properties, however, it is noted that although an RSC is not required on the residential portions of the Phase Two Property, the Town of Milton may request an RSC be filed on the entire development lands.

Given the above, it is the opinion of SOIL-MAT ENGINEERS that a Record of Site Condition to support the proposed residential development of the Site cannot be filed without further intrusive soil sampling within the areas of exceedances noted within the commercial properties.

The samples secured for analytical testing are believed to be representative of the conditions at the sample locations only. If any significant changes are noted, i.e., odours, staining etc., SOIL-MAT ENGINEERS should be contacted to reassess the environmental characteristics of the Site.

It is noted that subsurface soil conditions may be present on-site that are not typical of those presented in this Report. If future activities reveal such soils, SOIL-MAT ENGINEERS should be contacted to assess the soil conditions with respect to the proposed activity.

SOIL-MAT ENGINEERS & CONSULTANTS LTD. prepared this Report for the account of MIKMADA HOMES. The material in it reflects SOIL-MAT ENGINEERS' best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. SOIL-MAT ENGINEERS accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report.

We trust this Report is satisfactory for your purposes. Please feel free to contact our Office if you have any questions, or we may be of further service to you.

Yours very truly,

SOIL-MAT ENGINEERS & CONSULTANTS LTD.

Geena Gilmour, B.A.

Environmental Technician

Keith Gleadall, B.A., EA Dipl. Environmental Manager

Stephen R. Sears, B. Eng. Mgmt., P. Eng., QP_{ESA}

Review Engineer

Distribution: MIKMADA HOMES [1]

Enclosures: Appendix 'A' Site Plan Drawings and Borehole Logs;

Appendix 'B' AGAT Soil Analytical Data;

Appendix 'C' AGAT Ground Water Analytical Data;

Appendix 'D' Qualifications of Assessors; Appendix 'E' Statement of Limitations

Appendix 'A'

1. Drawing No.: 1: Site Plan;

Drawing No.: 1A: APECs;

3. Drawing No.: 2: Groundwater Flow Direction;

4. Drawing No.: 3: Borehole and Monitoring Well Location Plan;

5. Drawing No.: 3A: Analytical Data Summary [Soil] – Metals & ORPs;

6. Drawing No.: 3B: Analytical Data Summary [Soil] – EC & SAR;

Drawing No.: 3C: Analytical Data Summary [Soil] – PHCs;

8. Drawing No.: 3D: Analytical Data Summary [Soil] – BTEX;

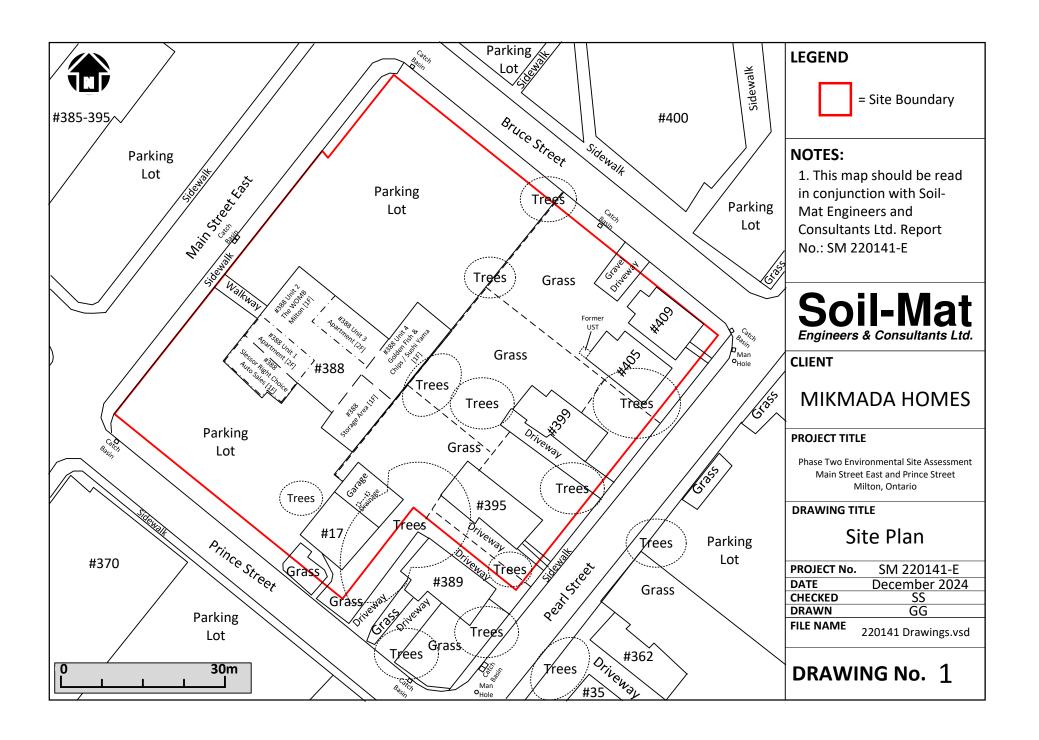
9. Drawing No.: 3E: Analytical Data Summary [Soil] – VOCs;

10. Drawing No.: 3F: Analytical Data Summary [Soil] – PAHs;

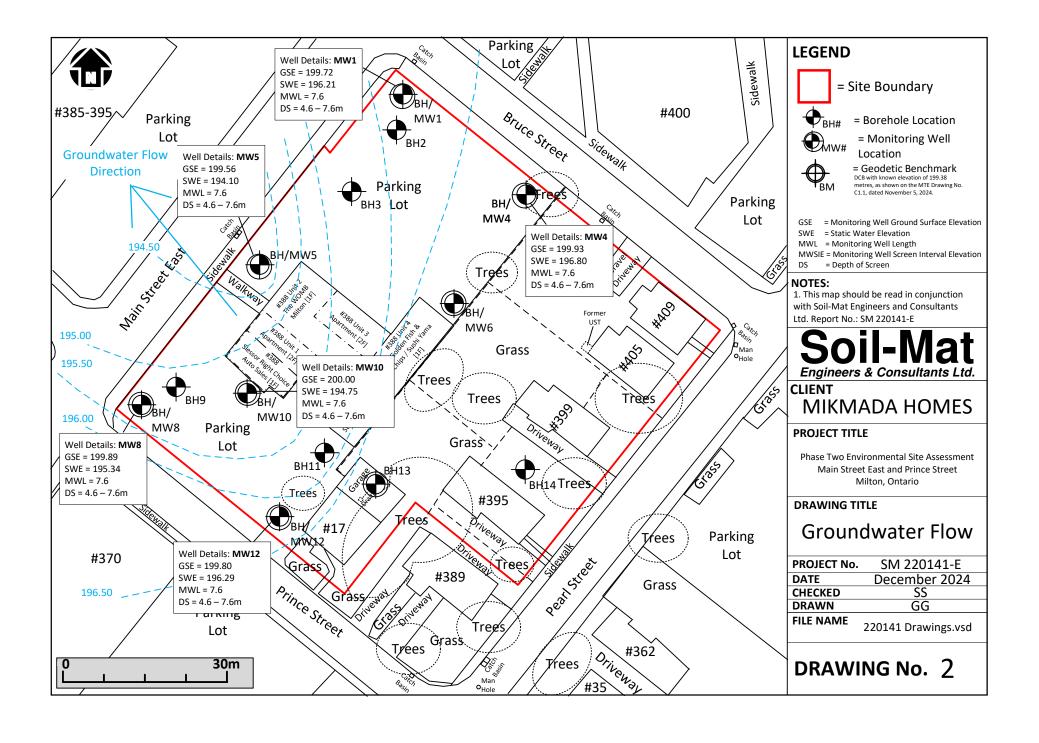
11. Drawing No.: 3G: Analytical Data Summary [Soil] – PCBs;

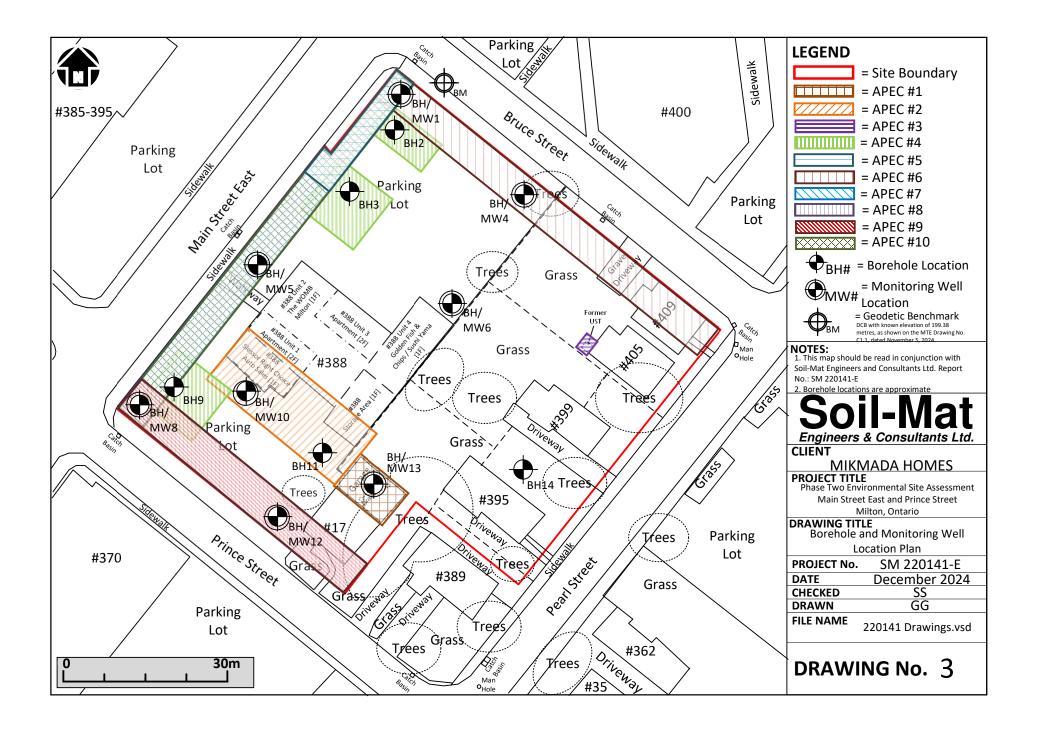
12. Drawing No.: 4A: Analytical Data Summary [Groundwater] – Metals & ORPs;

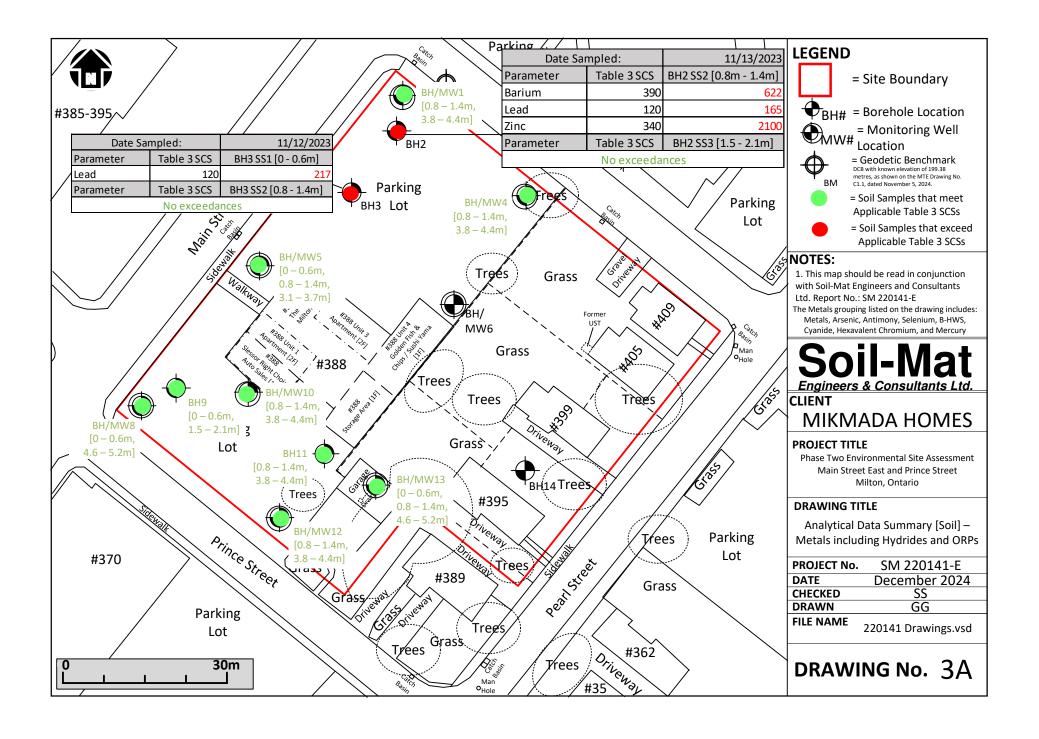
13. Drawing No.: 4B: Analytical Data Summary [Groundwater] – PHCs;

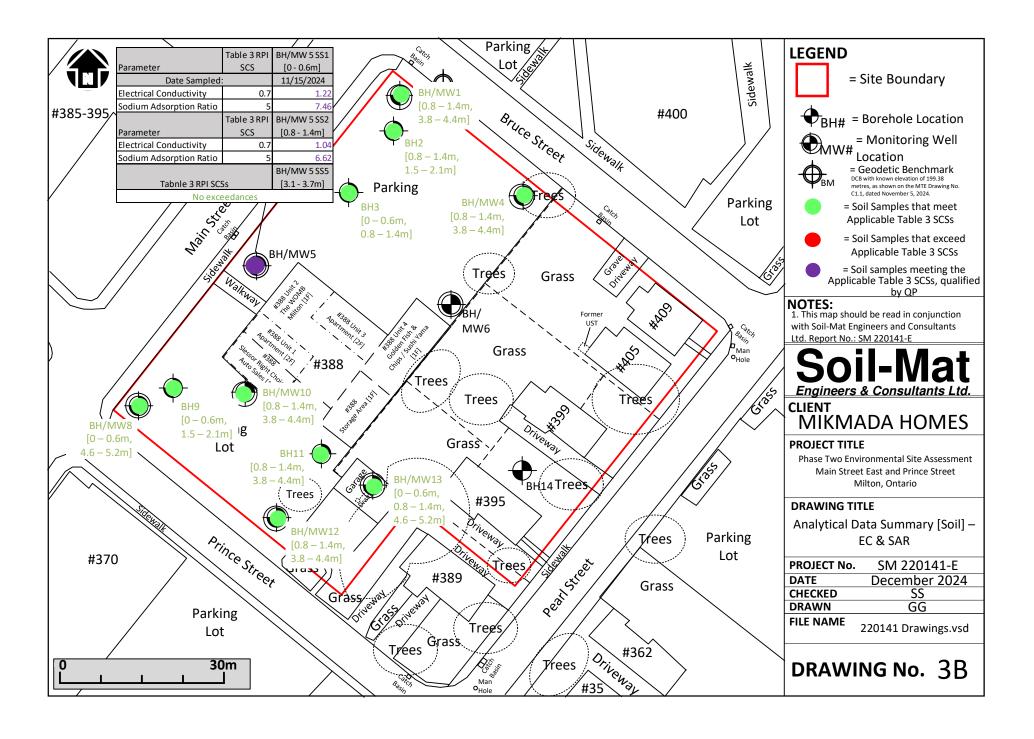

14. Drawing No.: 4C: Analytical Data Summary [Groundwater] – BTEX;

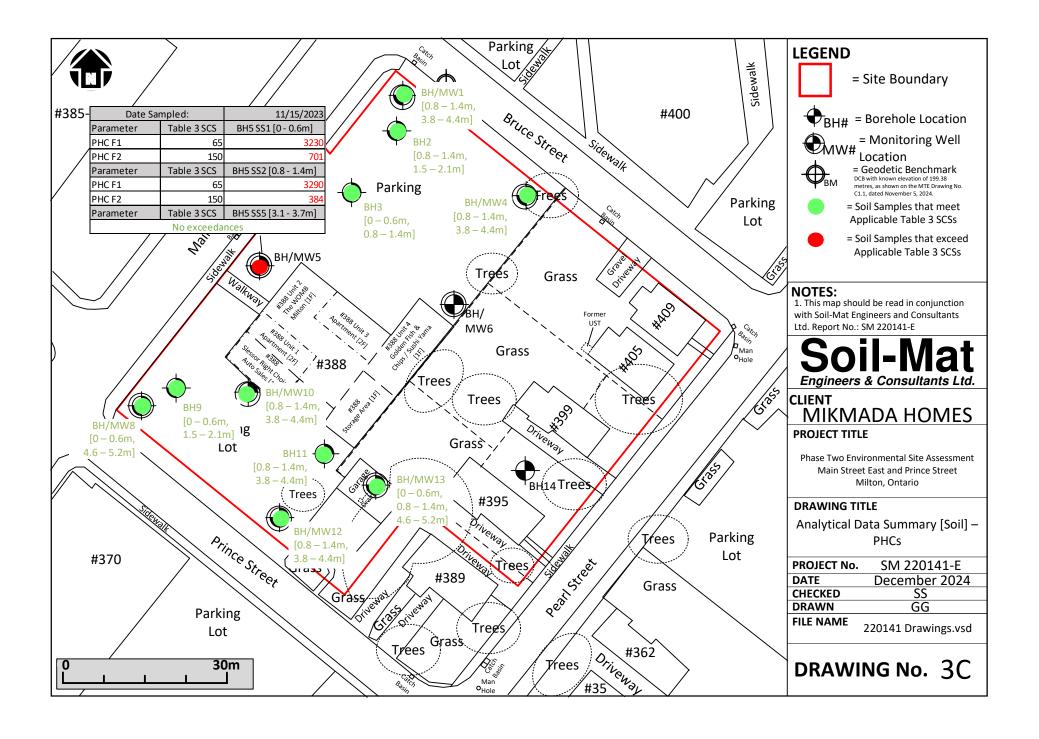

15. Drawing No.: 4D: Analytical Data Summary [Groundwater] – VOCs;

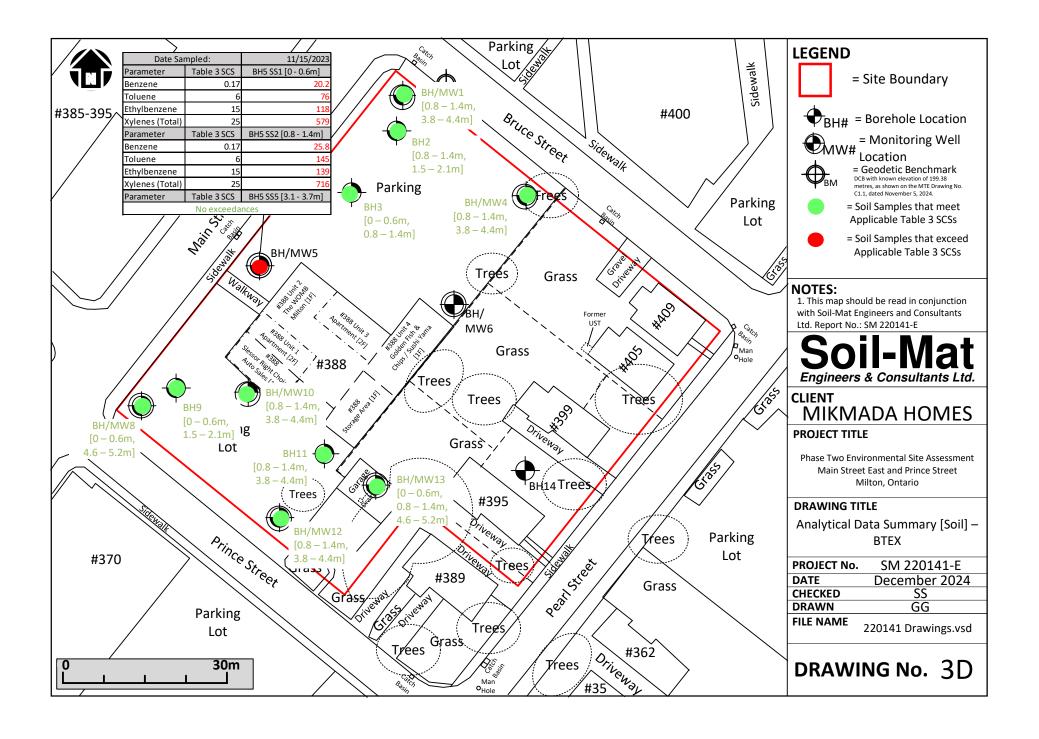

16. Drawing No.: 4E: Analytical Data Summary [Groundwater] – PAHs;

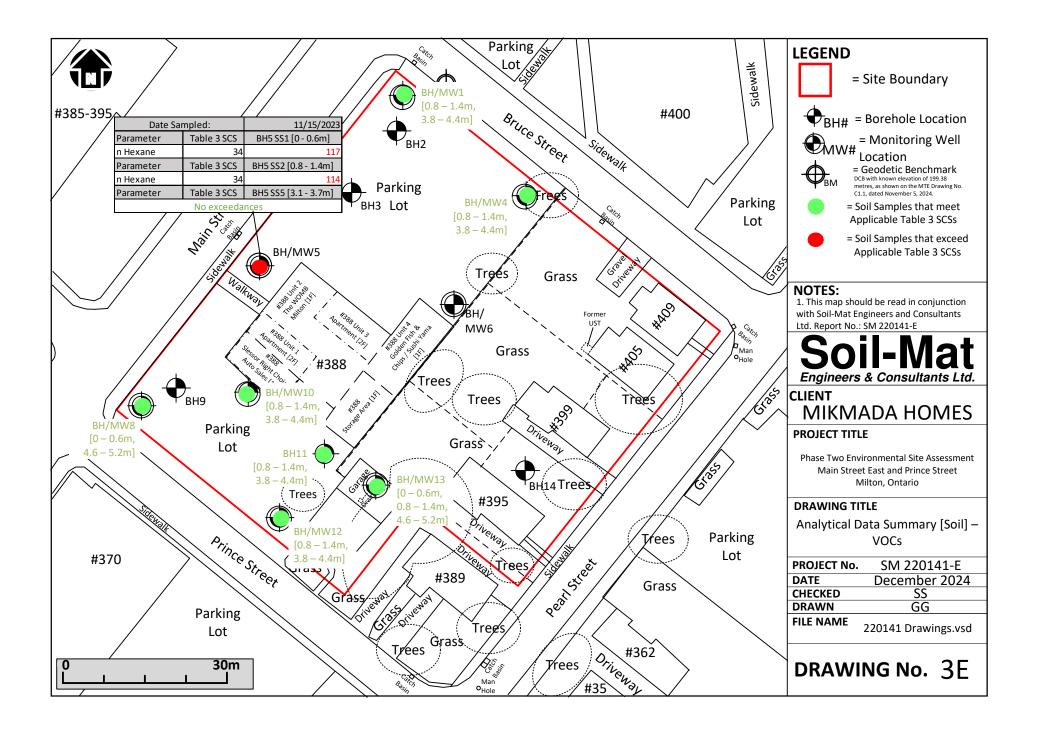

17. Drawing No.: 4F: Analytical Data Summary [Groundwater] – PCBs;

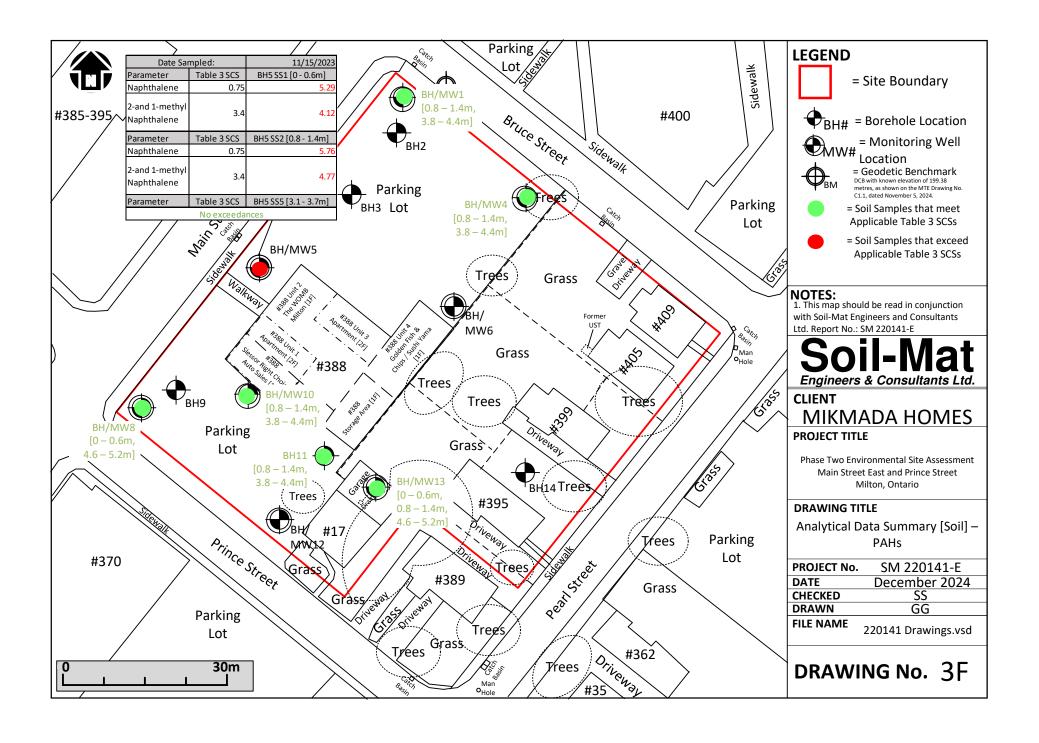

18. Borehole Logs

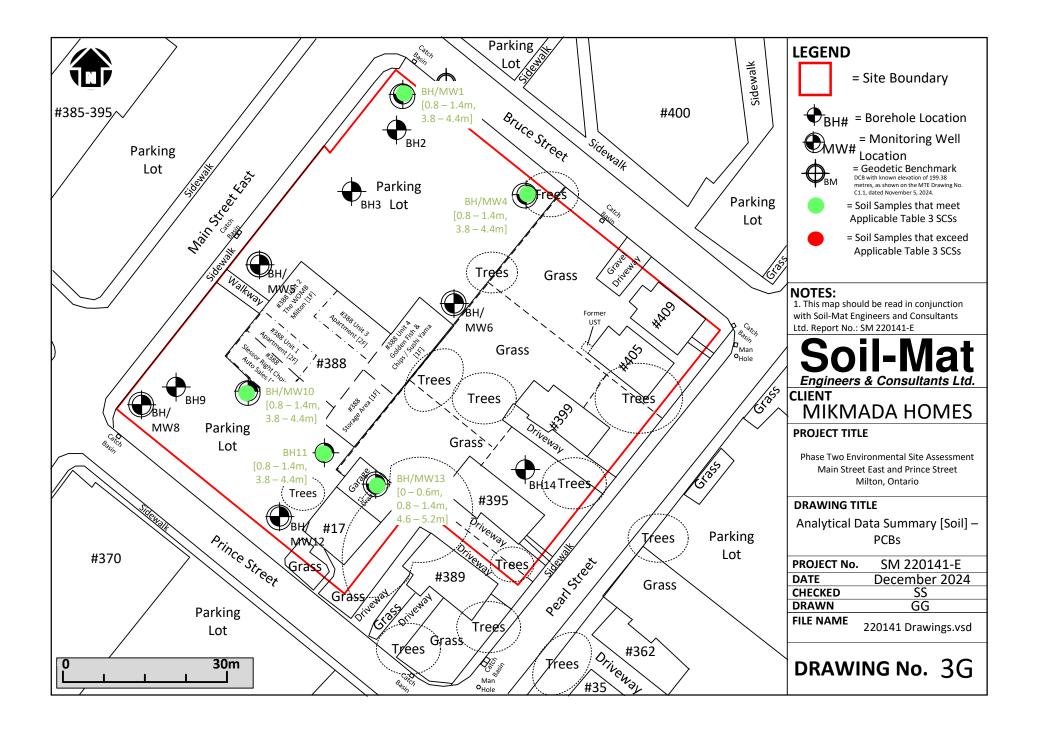


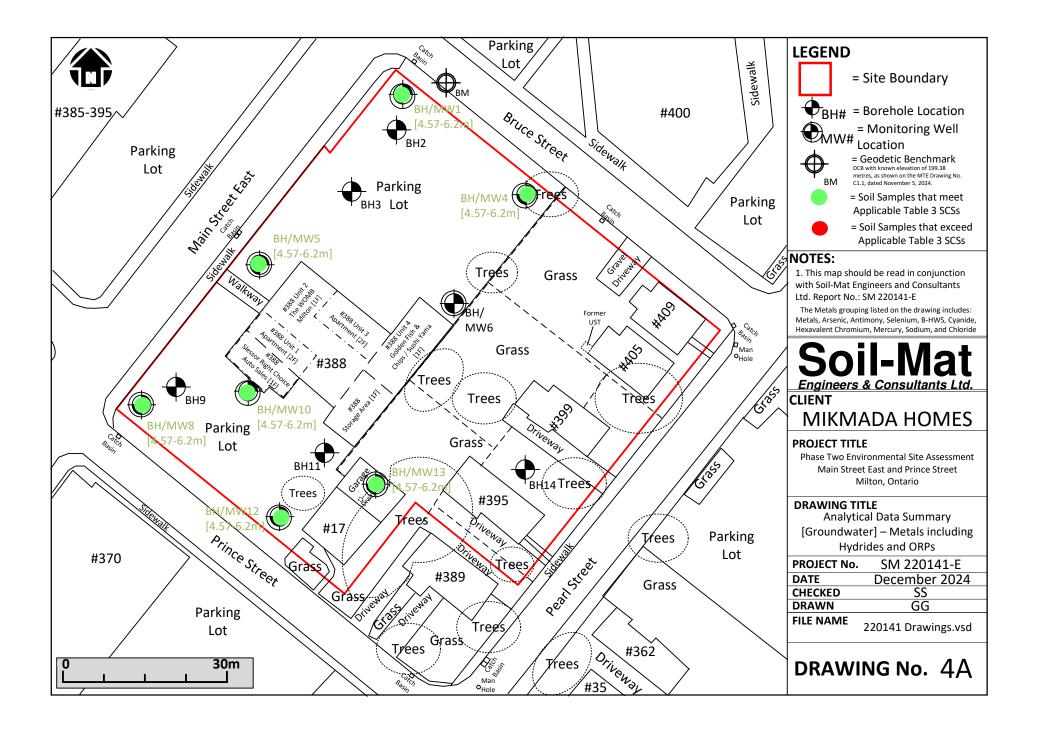


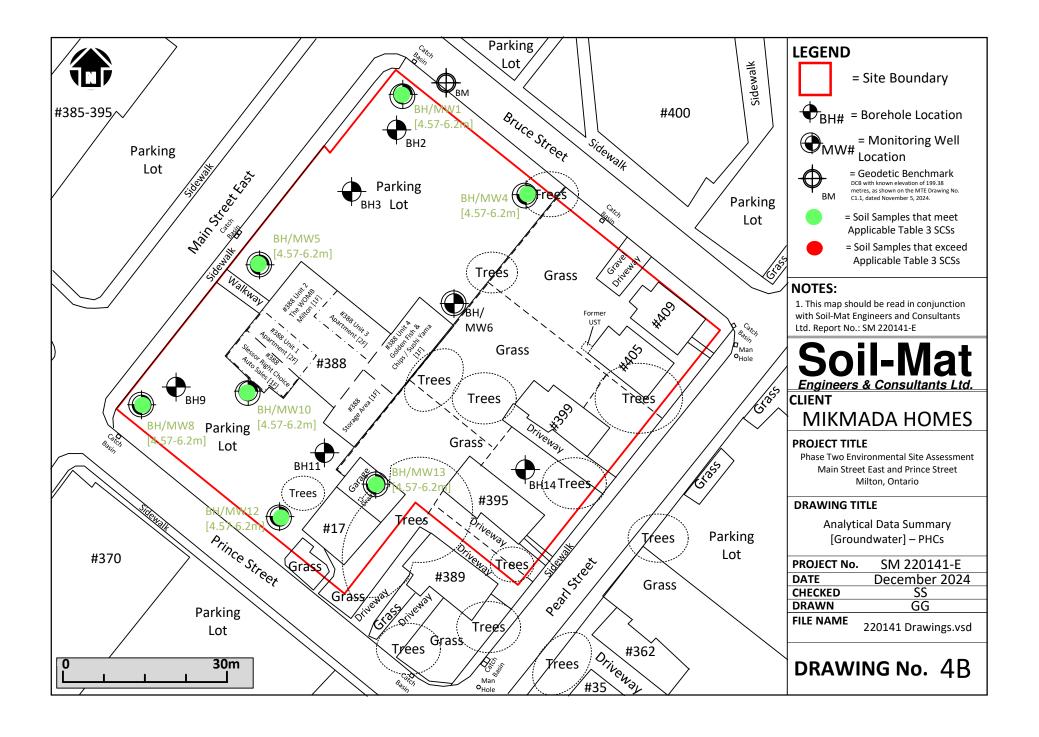


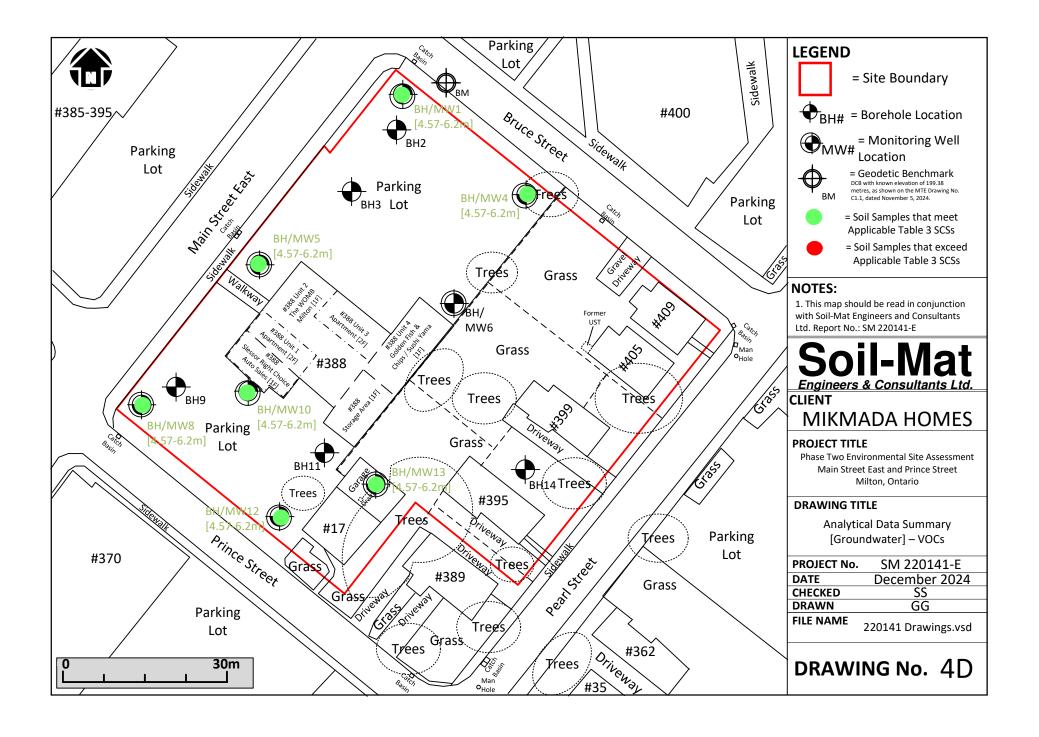


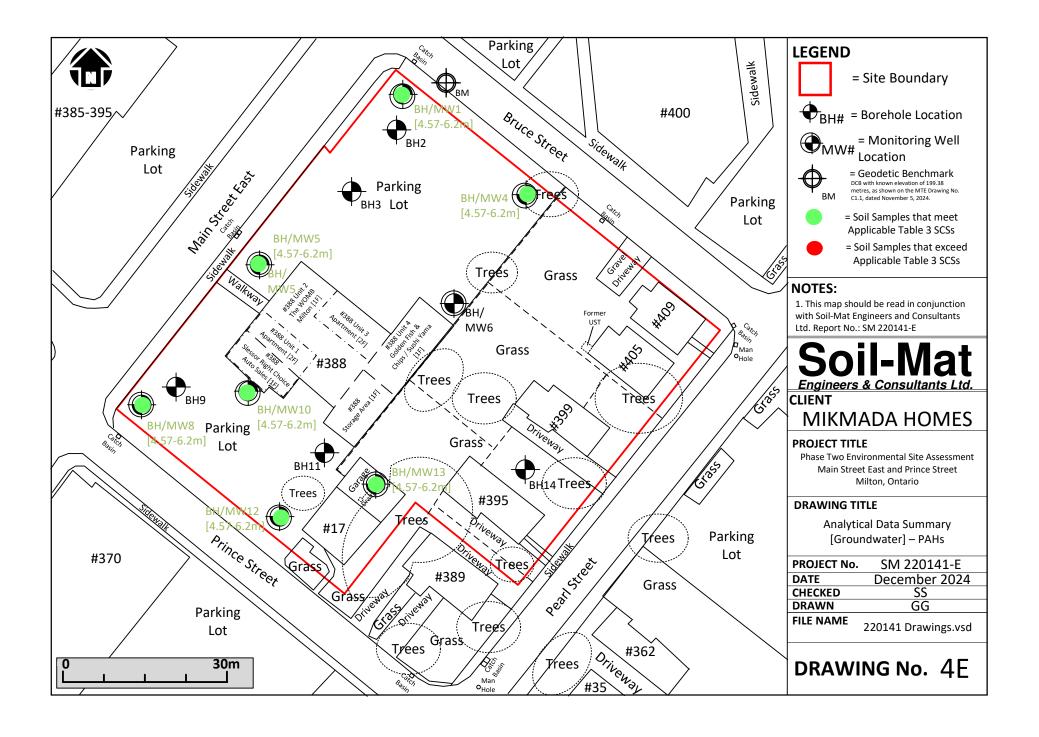


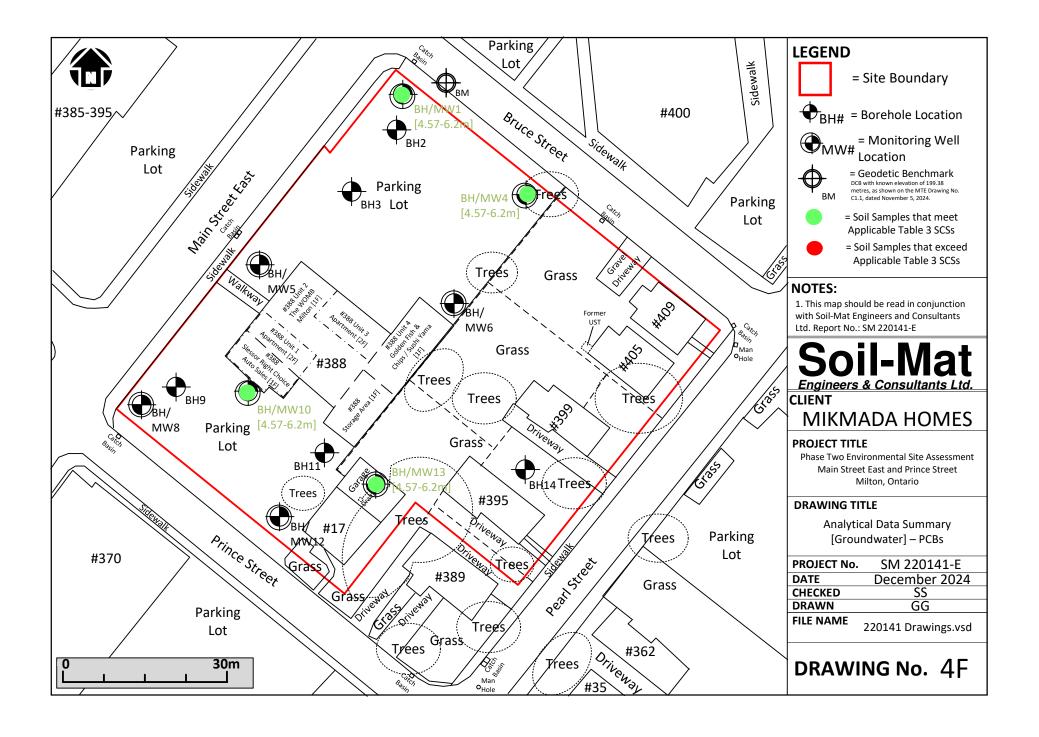












Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818873

E: 590643

							SAM	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	\$\text{N} \chi_w\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ft m	199.72		Ground Surface		,							
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Pavement Structure Approximately 100 millimetres of asphaltic concrete overlaying 150		SS	+	4,2,2,2	4				
4 5 6 7		H H	millimetres of compact granular base. Silty Clay/Clayey Silt Fill Grey to brown, occasional to frequent		ss		5,8,10,14	18		>4.5		
8	196.93		organic staining and inclusions, trace to some sand and gravel, firm.		ss	4	4,9,13,20	22		>4.5		
9 10 11 12			Sandy Clayey Silt Reddish brown, trace to some gravel, very stiff to hard.	¥	SS	5	8,17,26,32	43		>4.5		
13 4 14 15 16 17 5	195.60		Transitions to grey in colour.		ss	6	6,8,12,15	20		>4.5		
18 - 19 -							- 0,0,12,13	20		74.5		
20 6 21 22 7					SS	7	10,17,26,34	43		>4.5		
24												
26 <u>8</u> 27 <u>8</u>	191.70		End of Borehole		SS	8	7,27,50/5"	100		>4.5		A
28 🗐			NOTES:									
29 9 30 9 31 32 33 10			Borehole was advanced using hollow stem auger equipment on November 14, 2024 to termination at a depth of 8.0 metres.									
34 1 1 1 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.									
38 12 39 12 40 12 41 12			Soil samples will be discarded after 3 months unless otherwise directed by our client.									
42 43 44 45			4. A monitoring well was installed. The following free groundwater level readings have been measured: November 27, 2024 - 3.38 metres									
46 14												

Drill Method: Hollow Stem Augers

Drill Date: November 14,2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3

T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton


Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818867

E: 590641

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	\$\text{N} \text{W} \text{A} \\ 10 \ 20 \ 30 \ 40 \end{array}\$ Standard Penetration Test \\ \text{blows/300mm} \\ 20 \ 40 \ 60 \ 80 \end{array}\$
	199.66 199.40	1 1	Ground Surface					_	_	_		
0 0 0 1 2 1 3 1 1	199.40	## ## ##	Pavement Structure Approximately 100 millimetres of asphaltic concrete overlaying approximately 150 millimetres of		SS SS	1 2	7,8,8,10 2,3,2,4	16 5				✓ >
5 圭	197.70		compact granular base. Silty Clay/Clayey Silt Fill		SS	3	4,4,5,10	9		>4.5		
8 1 9 1			Brown, trace to some sand and gravel with occasional sandy and gravelly seams, moderate to frequent organic		SS	4	7,10,21,23	31		>4.5		
10 - 3 11 - 12 - 12			\inclusions, hard to firm. Sandy Clayey Silt		SS	5	8,13,21,28	34		>4.5		,
13 4 14	195.50		Reddish brown, trace to some gravel, very stiff to hard. Transitions to grey in colour.									
15 16 5 17 5			Transitions to groy in oslica.		SS	6	4,10,13,13	23		>4.5		
18 19 6 20 6												
21 22 7					SS	7	6,11,24,2	35		>4.5		
20 6 21 22 7 24 25 8 27 28 29 9												
20 - 8 27 - 28 -					SS	8	31,25,28,24	53		>4.5		
28 9 30 9 31 32 1					SS	9	10,19,30,34	49		>4.5		
32 1 33 1 34 1	(-	2, 2,22,2					
35 1 36 1 37												
38 1 39 1 40 1	4											
41 42 43 1	3				SS	10	5,5,7,10	12		2.5		
43 1 44 1 45 1 46 1												

Drill Method: Hollow Stem Augers

Drill Date: November 13, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3

T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton


Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818867

E: 590641

Description Gounts Gounts	v% 30 40 enetration Test /300mm 60 80
	/300mm •
47 48 49 150	
	V 1
51 SS 11 20,31,32,35 63 >4.5 52 14	
53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
58 18 04 40	
58	
62 1 19 NOTES:	
65 1. Borehole was advanced using hollow	
stem auger equipment on November 13, 2024 to termination on inferred bedrock at a depth of 18.3 metres.	
69 2 21 2 2. Borehole was recorded as open to a	
71 depth of 14.6 metres and wet at depth of 14.0 metres upon completion and backfilled as per Ontario Regulation 903.	
74 3. Soil samples will be discarded after 3 months unless otherwise directed by our client.	
77 	
78	
84 	
85 = 26 86 = 87 = 1	
88 1 21 89 1 21	
90 91 91 92 92 92 93 94 94 94 94 95 95 95 95	

Drill Method: Hollow Stem Augers

Drill Date: November 13, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3 T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton


Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818853

E: 590631

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	10 20 30 40 Standard Penetration Test blows/300mm 20 40 60 80
ft m	199.83	•••	Ground Surface									
1 2 3 1 4		###	Pavement Structure Approximately 125 millimetres of asphaltic concrete. Silty Clay/Clayey Silt Fill		SS SS	1 2	4,9,36,17 2,2,3,7	45 5				
5 6 7 8			Brown, trace to some sand and gravel with occasional sandy and gravelly seams, occasional cobbles, hard to firm.		SS	3	4,8,12,17	20		>4.5		
9 3 10 3 11 12 12			Sandy Clayey Silt Reddish brown, trace to some gravel, very stiff to hard.		SS	5	6,13,17,22 6,13,24,31	37		>4.5 >4.5		
13 4 14 15 16 5 17 5	195.70		Transitions to grey in colour.		ss	6	5,7,12,12	19		>4.5		
18 19 6 20 1 22 1 7					SS	7	9,13,14,19	27		>4.5		
24 * 25 * 26 * 8	192.10		End of Borehole		SS	8	50/5"	100		>4.5		
27 28 29 30 31 32 33 34 35 36 37 37 38 39 40 41 41 41 41			NOTES: 1. Borehole was advanced using hollow stem auger equipment on November 12, 2024 to termination at a depth of 7.8 metres. 2. Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903. 3. Soil samples will be discarded after 3 months unless otherwise directed by our client.									
42 1 1 44 1 45 1 46 1 1 4												

Drill Method: Hollow Stem Augers

Soil-Mat Engineers & Consultants Ltd.

Drill Date: November 14,2024

Hole Size: 200 millimetres

401 Grays Road, Hamilton, Ontario, L8E 2Z3 T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818858

E: 590662

								SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data		Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	10 20 30 40 Standard Penetration Test blows/300mm 20 40 60 80
ft m	199.93	-	Ground Surface	· ·	,,,								
3 1	199.60		Pavement Structure Approximately 30 millimetres of asphaltic concrete overlaying 300 millimetres of compact granular base.			SS SS	1 2	14,7,3,5 4,3,6,8	10 9				
5 6 7 2	198.20		Silty Clay/Clayey Silt Fill Grey, occasional to frequent organic staining and inclusions, trace to some			SS	3	4,5,10,13	15		>4.5		
8 9 10 3			sand and gravel, stiff. Sandy Clayey Silt			SS	4	4,9,10,13	19		>4.5		
11 <u> </u>	405.00		Reddish brown, trace to some gravel, occasional cobbles in the upper levels, very stiff to hard.	*		SS	5	11,20,24,30	44				
13 4 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	195.80		Transitions to grey in colour.		<u> </u>	SS	6	5,6,9,10	15		>4.5		
19 6 20 6 21 22 7						SS	7	5,7,8,16	15		>4.5		
24 * 25 *	191.70				• • •	SS	8	11,21,29,20	50		>4.5		
28 🗐	191.70		End of Borehole NOTES:										
31 * 32 * 33 * 10			Borehole was advanced using hollow stem auger equipment on November 14, 2024 to termination at a depth of 8.2 metres.										
34 - 35 - 11 36 - 11	1		Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.										
38 12 39 12 40 41			Soil samples will be discarded after 3 months unless otherwise directed by our client.										
42 13 43 13 44 14 45 14			4. A monitoring well was installed. The following free groundwater level readings have been measured: November 27, 2024 - 3.44 metres										

Drill Method: Hollow Stem Augers

Drill Date: November 14, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3

T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818836

E: 590614

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	\$\text{N} \text{w\\\ 10} & 20 & 30 & 40\$\$\$\$\$\$ Standard Penetration Test \text{\text{blows/300mm} \text{\text{\text{e}}}} \text{20} & 40 & 60 & 80\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
ft m	199.56		Ground Surface									
2 1	199.23		Pavement Structure Approximately 100 millimetres of asphaltic concrete overlaying 175		ss	1	8,4,3,5	7				
4 1	198.10		millimetres of compact granular base.	0	SS	2	4,3,5,6	8				
5 6 7 2	100110		Silty Clay/Clayey Silt Fill Dark grey to black, distinct hydrocarbon odour, trace sand and		SS	3	4,8,9,12	17		>4.5		
8 8 9 9			gravel, firm to stiff.	0	ss	4	4,10,11,15	21		>4.5		
10 3 11 1 12 1			Sandy Clayey Silt Reddish brown, trace to some gravel, occasional cobbles, very stiff to hard.		SS	5	5,16,20,22	36		>4.5		
13 4 14 1 15 1	195.40		Transitions to grey in colour.									
16 5 17 18					SS	6	7,8,8,13	16		>4.5		4
19 6 20 6												
21 - 22 - 23 - 7					SS	7	4,11,14,14	25		>4.5		
24 - 25 -												
ı =	191.40				SS	8	17,26,33,25	59		>4.5		
27 * 28 * 29 * 9 30 * 9			End of Borehole NOTES:									
30 1 3 31 32 1 10 33 1 10			Borehole was advanced using hollow stem auger equipment on November 15, 2024 to termination at a depth of 8.2 metres.									
35 1 1 1 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2. Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.									
38 12 39 12 40 12 41 12			Soil samples will be discarded after 3 months unless otherwise directed by our client.									
42 13 43 13 44 14 45 14			4. A monitoring well was installed. The following free groundwater level readings have been measured: November 27, 2024 - 5.46 metres									

Drill Method: Hollow Stem Augers

Drill Date: November 15, 2024

Jim Bute. November 10, 202

Hole Size: 200 millimetres

Drilling Contractor: Davis Drilling Ltd.

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3

T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton


Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818831

E: 590650

							SAMI	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	\$\text{N} \text{W\%} \text{A}\$ \$\tag{10} \text{20} \text{30} \text{40}\$ \$\text{Standard Penetration Test} \text{\text{blows/300mm}} \text{\text{\text{0}}} \text{20} \text{40} \text{60} \text{80}\$
ft m	200.02		Ground Surface	>	+-		ш		ш.	<u> </u>		
1 2 2			Pavement Structure Approximately 100 millimetres of		SS	5 1	2,2,3,4	5				•
3 1 4 1	198.94		\asphaltic concrete. Silty Clay/Clayey Silt Fill		ss	2	2,5,8,11	13		>4.5		
5 6 7 2			Greyish brown, trace to some sand and gravel, occasional to moderate organic inclusions and staining, firm to stiff.		ss	3	4,7,10,14	17		>4.5		
β.≢		\mathbb{H}	Sandy Clayey Silt		ss	4	7,7,12,14	19		>4.5		
9 10 3 11 1 12 1			Brown to reddish brown, trace to some gravel, reworked appearance in the upper levels, very stiff to hard.		ss	5 5	6,10,10,21	20		>4.5		
13 🗐 4	195.84		Transitions to grey in colour.									
14 15 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17			Transitions to groy in colour.		ss	6	4,9,12,11	21		>4.5		
18 6 20 6					ss	7	5,9,12,14	21		>4.5		
22 1 7				*								
23 24 25 26 27 28 29 30 31 31		\mathbb{H}			ss	8	15,22,24,31	46		>4.5		
27 - 0						, 0	- 10,22,21,01					
29 <u>9</u>					SS		50/5"	100				
31 * 32 * 33 * 10		\mathbb{H}			НС	1				-		
33 10 34 35					нс	2 2						
35 <u>1</u> 36 <u>1</u> 37 <u>1</u>		\mathbb{H}			_					-		
					нс	3						
38 39 40 41 42 43 44 45 46 46 46 47						3						
42 1 13												
45 46 14					+ HG	4						

Drill Method: Hollow Stem Auger

Drill Date: November 13, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3 T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR **Sheet:** 1 of 2

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton


Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818831

E: 590650

							SAMF	PLE				Moisture Content
	(m) r		Description	m			unts	00mm	Á	sm2)	//m3)	10 20 30 40
Depth	Elevation (m)	Symbol		Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	Standard Penetration Test blows/300mm 20 40 60 80
47 48 49 49 15 50 51 51 51					HQ	5						
51 16 52 16 53 16 54 17 55 17 56 17					HQ	6						
58 18 59 18 60 1	404.00				HQ	7						
62 19 63 19 64 19 65 19 66 20			Queenston Shale Red, with more resistant grey layers, highly weathered in upper levels, becoming more sound with depth, hard.		HQ	8	RQD = 9%					
67 68 21 21 70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	178.20				HQ	9	RQD = 58%					Compressive Strength = 42.3 MPa Compressive Strength = 48.7 MPa
72 <u>22</u> 73 <u>74</u>			End of Borehole									-49.7 WII Q
75 23 76 23 77 24 78 24 79 24 80 44 81 25 82 25			NOTES: 1. Borehole was advanced using hollow stem auger equipment on November 13, 2024 to termination at a depth of 9.3 metres. Bedrock was cored to a depth of 21.8 metres. 2. Soil samples will be discarded after 3 months unless otherwise directed by our									
83 🗐			months unless otherwise directed by our client. 3. A monitoring well was installed. The									
84 26 85 26 86 87 88 88 27 90 90			following free groundwater level readings have been measured: November 27, 2024 - 6.71 metres									
90 * 91 * 92 * 28												

Drill Method: Hollow Stem Auger

Drill Date: November 13, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3 T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818811

E: 590593

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	\$\text{N} \text{w\\\ 10} & 20 & 30 & 40\$\$\$\$\$\$ Standard Penetration Test \text{\text{blows/300mm} \text{\text{\text{e}}}} \text{20} & 40 & 60 & 80\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
ft m	199.89		Ground Surface									
1 2 3 1	199.60		Pavement Structure Approximately 150 millimetres of asphaltic concrete overlaying 100		SS	1	2,2,3,5	5				,
4 🛨			millimetres of compact granular base.		SS	2	1,0,2,1	2				
5 6 7 2	198.20		Silty Clay/Clayey Silt Fill Reddish brown, occasional organic inclusions, trace to some sand and		SS	3	4,9,13,29	22		>4.5		
8 8 9 9			gravel, firm to soft.		ss	4	10,13,11,12	24		>4.5		
10 3 11 1 12 1			Sandy Clayey Silt Reddish brown, trace to some gravel, very stiff to hard.		SS	5	7,11,15,15	26		>4.5		
13 🗐 4	195.70											
14 * 15 *		-	Transitions to grey in colour.	<u>-</u>								
16 上 5					ss	6	8,16,17,21	33		>4.5		│
17 18 19 19 19 19 19 19 19 19 19 19 19 19 19												
20 6 21 22 2					SS	7	7,12,15,36	27		>4.5		
23 * 7 24 *												
25 <u>8</u>	191.70	//		°.9 <u> </u> °.°	SS	8	34,32,29,45	61		>4.5		
26 8 27 28	131.70		End of Borehole									
29 30 9			NOTES:									
30 31 32 33 33 34 34 34 34 34 34 34 34 34 34 34			Borehole was advanced using hollow stem auger equipment on November 11, 2024 to termination at a depth of 8.2 metres.									
35 1 1 1 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.									
38 12 39 12 40 12			Soil samples will be discarded after 3 months unless otherwise directed by our client.									
42 1: 43 1: 44 1: 45 1: 46 1:			4. A monitoring well was installed. The following free groundwater level readings have been measured: November 27, 2024 - 4.57 metres									

Drill Method: Hollow Stem Augers

Drill Date: November 11, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3

T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818813

E: 590597

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	10 20 30 40 Standard Penetration Test
ft m	199.92	-	Ground Surface									
1 2 3 1 4	199.00	#	Pavement Structure Approximately 150 millimetres of asphaltic concrete overlaying 100 millimetres of compact granular base.		ss ss	1 2	2,3,7,4 5,6,4,4	10 10				
6 2	198.20		Reddish brown, trace silt and gravel, occasional concrete debris, compact.		ss	3	4,6,9,11	15		>4.5		
8 9 10 3			Silty Clay/Clayey Silt Fill Brown, trace to some sand and gravel,		SS	4	5,7,9,26	16		>4.5		
11 <u>1</u> 12 <u>1</u> 13 <u>4</u>			Sandy Clayey Silt Reddish brown, trace to some gravel,		SS	5	5,8,14,17	22		>4.5		
14 15 16 16 17			very stiff to hard. Transitions to grey in colour.		SS	6	5,9,13,13	22		>4.5		
18 19 20 6 21 22 23 7					SS	7	8,12,14,26	26		>4.5		
24 <u>+</u> 25 +		<u> </u>			ss	8	13,19,20,25	39		>4.5		
V / 🖳	191.70	}_			33	0	13,19,20,23	39		74.5		
28 29 30 31 32 33 34			End of Borehole NOTES: 1. Borehole was advanced using hollow stem auger equipment on November 11, 2024 to termination at a depth of 8.2 metres.									
35 1 1 37 37 37 37 37 37 37 37 37 37 37 37 37			Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.									
38 12 12 40 41 42 43 13			Soil samples will be discarded after 3 months unless otherwise directed by our client.									
44 45												
46 🛨 14	1											

Drill Method: Hollow Stem Augers

Drill Date: November 11, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3 T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818814

E: 590597

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	10 20 30 40 Standard Penetration Test blows/300mm 20 40 60 80
ft m	200.00		Ground Surface									
3 1	199.50 198.50	#	Pavement Structure Approximately 100 millimetres of asphaltic concrete overlaying 350 millimetres of compact granular base.		SS SS	1 2	6,4,3,2 2,2,4,4	7				
5 6 7 2	190.30		Silty Clay/Clayey Silt Fill Reddish brown, trace to some sand and gravel, firm.		SS	3	4,8,9,11	17		>4.5		
8		}	Sandy Clayey Silt		ss	4	4,10,14,17	24		>4.5		
10 3	405.00		Reddish brown, trace to some gravel, stiff to hard.		SS	5	4,7,8,14	15		>4.5		
13 4 14 15 16 5	195.90		Transitions to grey in colour.		ss	6	1,6,7,9	13		3.0		
18 19 20 6					33	0	1,0,7,9	13		3.0		
20 ± 0 21 ± 22 ± 7					SS	7	2,4,7,8	11		3.0		
24 - 25 -	191.80				SS	8	12,19,24,28	43		>4.5		
28			End of Borehole									
29 30 9 31 32 33 10 34 34 34			NOTES: 1. Borehole was advanced using hollow stem auger equipment on November 12, 2024 to termination at a depth of 8.2 metres.									
35 1 36 1 37 1			2. Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.									
38 12 39 12 40 41			Soil samples will be discarded after 3 months unless otherwise directed by our client.									
42 13 43 14 44 14 45 14			4. A monitoring well was installed. The following free groundwater level readings have been measured: November 27, 2024 - 5.07 metres									

Drill Method: Hollow Stem Augers

Drill Date: November 12, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd. 401 Grays Road, Hamilton, Ontario, L8E 2Z3 T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818805

E: 590627

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	N
ft m	199.92		Ground Surface									
1 2 1	199.00		Pavement Structure Approximately 50 millimetres of asphaltic concrete overlaying		SS	1	4,3,2,1	5]
5	198.10		approximately 300 millimetres of compact granular base. Silty Clay/Clayey Silt Fill		SS	3	2,1,2,3 3,5,8,10	13		>4.5		
7 - 2			Brown, trace to some sand and gravel with occasional sandy and gravelly seams, soft to stiff.		ss	4	5,9,10,13	19		>4.5		
10 = 3 11 = 12 =			Sandy Clayey Silt Reddish brown, trace to some gravel,		ss	5	5,8,13,11	21		>4.5)
13 4 14 1 15 1	195.80		stiff to very stiff. Transitions to grey in colour.									
16 5 17 5 18 5 19 6					SS	6	3,5,7,8	12		4.0		
21 <u>22 23 7</u>	193.70		Sand and Gravel Grey, trace to some silt and clay, occasional cobbles, compact to dense.		SS	7	3,4,5,4	9				
24	,				SS	8	22,21,21,22	42				
29 F 9 30 F 9	190.50		Sandy Clayey Silt		SS	9	8,10,12,14	22		>4.5		
32 1 33 1 34 1 35 1	d		Grey to reddish grey, trace to some gravel, very stiff to hard.									
36 1 1					SS	10	27,19,19,29	38		>4.5		
38 - 1 39 - 1 40 - 1 41 - 1					SS	11	10,12,12,12	24		3.5		
42 43 44 45 46 1					ss	12	771440	18		20		
<u> </u>	1	<u> </u>			JOS	١Z	7,7,11,12	10		3.0		

Drill Method: Hollow Stem Augers

Drill Date: November 12, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3

T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818805

E: 590627

							SAMI	PLE				Moisture Content		
Depth	Elevation (m)	Symbol	Description	Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	**		
47 48 49 15 51 16 53 16 55 56 57 58	184.40				SS	13	46,50/3"	100		>4.5				
52 16 53 16			End of Borehole NOTES:											
55 17 56 17 57 17			Borehole was advanced using hollow stem auger equipment on November 12, 2024 to termination at a depth of 15.5 metres.											
58 59 60 61 62 63			2. Borehole was recorded as open to a depth of 14.6 metres and 'wet' at depth of 7.9 metres upon completion and backfilled as per Ontario Regulation 903.											
62 19 63 19 64 19 65 66 67 68 69 20			3. Soil samples will be discarded after 3 months unless otherwise directed by our client.											
67 68 69 21 70														
72 22 73 74 74														
75 23 76 23														
78 24 79 24 80 81														
82 * 25 83 *														
82 25 83 84 85 26 86 87 88 89 90 91 92 28														
90 - 1 91 - 28														

Drill Method: Hollow Stem Augers

Drilling Contractor: Davis Drilling Ltd.

Drill Date: November 12, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3

T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

bs Ltd.

8E 2Z3
F: 905.318.7455

Datum: Geodetic
Field Logged by: BS
Checked by: KR
Sheet: 2 of 2

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 388 Main Street East, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818792

E: 590614

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	**
ft m	199.80		Ground Surface									
1 1 2 1 3 1 1	198.60		Pavement Structure Approximately 40 millimetres of asphaltic conference overlaying 125		SS SS	1 2	2,2,3,5 3,5,6,10	5		>4.5		
4 5 6 7 2			Silty Clay/Clayey Silt Fill Brown, trace to some sand and gravel,		ss	3	5,6,8,11	14		>4.5		
8 9 10 3			Sandy Clayey Silt Reddish brown, trace to some gravel,		ss	4	5,9,11,14	20		>4.5		
11 12 13 14 4	195 70		very stiff to hard.	*	ss	5	5,9,13,19	22		>4.5		
14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	193.70		Transitions to grey in colour.		SS	6	5,8,11,13	19		>4.5		
21 22 23 7 24					SS	7	7,10,12,15	22		>4.5		
25 8 26 8 27	191.60				SS	8	11,15,18,20	33		>4.5		
28 29 30 9			End of Borehole NOTES:									
31 32 33 33 34			Borehole was advanced using hollow stem auger equipment on November 11, 2024 to termination at a depth of 8.2 metres.									
35 1 36 1 37 1			Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903.									
38 12 39 12 40 12 41 12			Soil samples will be discarded after 3 months unless otherwise directed by our client.									
42 13 43 44 45 46 1			4. A monitoring well was installed. The following free groundwater level readings have been measured: November 27, 2024 - 3.37 metres									

Drill Method: Hollow Stem Augers

Drill Date: November 12, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3

T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 17 Prince Street, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818792

E: 590614

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	\$\text{W\\ 10 20 30 40}\$\$\$ Standard Penetration Test blows/300mm 20 40 60 80
	199 88		Ground Surface	_								
0 100	199.88 199.60		Concrete Slab Structure									
1 1 2 1 1 4 1 1		HH.	Approximately 150 millimetres of concrete overlaying 150 millimetres of compact granular base.		SS	1						<i> </i>
5		#	Silty Clay/Clayey Silt Fill		SS	2						
6 2 7 2	197.40	###	Brown to grey, trace to some sand and gravel, occasional organic inclusions.		ss	3						
9 10 3	196.50		Sandy Clayey Silt Reddish brown, trace to some gravel.		SS	4						
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	180.00		End of Borehole NOTES: 1. Borehole was advanced using solid stem auger equipment on November 15, 2024 to termination at a depth of 3.4 metres. 2. Borehole was recorded as open and 'dry' upon completion and backfilled as per Ontario Regulation 903. 3. Soil samples will be discarded after 3 months unless otherwise directed by our client.									
38 1 1 40 1 4 41 42 4 4 43 1 1 44 4 4 4 45 4 1	3											

Drill Method: Solid Stem Augers

Drill Date: November 15, 2024

Hole Size: 100 millimetres

Soil-Mat Engineers & Consultants Ltd.

401 Grays Road, Hamilton, Ontario, L8E 2Z3 T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Sonic Soil Sampling Inc.

Datum: Geodetic Field Logged by: AL Checked by: KR

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 395 Pearl Street, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818801

E: 590664

							SAMF	PLE				Moisture Content
Depth	Elevation (m)	Symbol	Description	Well Data	Туре	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	\$\begin{array}{cccccccccccccccccccccccccccccccccccc
ft m	199.48	~.	Ground Surface									
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	199.20		Topsoil Approximately 250 millimetres of topsoil.		SS	1	4,4,5,5	9				1
I ⊿.⊒-			Sandy Clayey Silt Brown to reddish brown, trace to some		SS	2	6,7,12,13	19		>4.5		
5 2			gravel, reworked appearance in the upper levels, stiff to hard.		SS	3	6,8,12,15	20		>4.5		
9 10 3					SS	4	9,5,10,14	15		>4.5		
11 1 12 13 4	105 20				SS	5	5,12,16,23	28		>4.5		
14 15	195.50		Transitions to grey in colour.									
16 5 17 18					SS	6	11,12,19,20	31		>4.5		
19 <u>6</u>												
21 * 22 * 23 * 7					SS	7	12,50/3"	100		>4.5		
24 25 												
26 ± 8					SS	8	23,26,50/4"	100		>4.5		
28 29 9 30 31 31												
31 * 32 * 33 * 10 34 *					SS	9	22,40,50/5"	100		>4.5		
35 1 1 1 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
38 12 12 40 12 41 14 15 15 15 15 15 15 15 15 15 15 15 15 15					SS	10	11,12,12,13	24		>4.5		
43 13 44 4 45 46 14												

Drill Method: Mud RotaryDrill Date: November 14, 2024Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd.401 Grays Road, Hamilton, Ontario, L8E 2Z3
T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455

www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR Sheet: 1 of 2

Project No: SM 220141-EG

Project: Proposed Residential Building

Location: 395 Pearl Street, Milton

Client: Mikmada Homes

Project Manager: Kyle Richardson, P. Eng.

Borehole Location: See Drawing No. 1

UTM Coordinates - N: 4818801

E: 590664

							SAMF	PLE				Moisture Content
	(m) uc		Description	ata		_	ounts	300mm	gr.y	/cm2)	(N/m3)	10 20 30 40
Depth	Elevation (m)	Symbol		Well Data	Type	Number	Blow Counts	Blows/300mm	Recovery	PP (kgf/cm2)	U.Wt.(kN/m3)	Standard Penetration Test blows/300mm 20 40 60 80
47 48 49 50 51 52 53 44 55 55 66 61 18 55 66 66 66 66 66 66 66 66 66 66 66 66												
50 15					SS	11	14,13,22,23	35		>4.5		
53 16 54 55												
56 17 57												
58 18 59 18	181.00				SS	12	48,50/3"	100				
61 <u>1</u> 62 <u>19</u> 63 <u>19</u>			End of Borehole Auger refusal on inferred bedrock.									
64 1 65 20			NOTES: 1. Borehole was advanced using mud									
67 68 69 22 70			rotary equipment on November 14, 2024 to termination on inferred bedrock at a depth of 18.5 metres.									
71 🖶			Soil samples will be discarded after 3 months unless otherwise directed by our									
73 - 22 73 - 74 - 74			client.									
75 <u>23</u> 76 <u>77</u>												
78 <u>1</u> 24 79 <u>1</u> 24												
81 <u>25</u> 82 <u>25</u> 83 <u>3</u>												
84 85 85 86												
87 88 27												
72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 28												

Drill Method: Mud Rotary
Drill Date: November 14, 2024

Hole Size: 200 millimetres

Soil-Mat Engineers & Consultants Ltd. 401 Grays Road, Hamilton, Ontario, L8E 2Z3 T: 905.318.7440, TF: 800.243.1922, F: 905.318.7455 www.soil-mat.ca E: info@soil-mat.ca

Drilling Contractor: Davis Drilling Ltd.

Datum: Geodetic Field Logged by: BS Checked by: KR Sheet: 2 of 2

Appendix 'B'

1. AGAT Certificate of Analysis - Soil

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT
401 GRAYS ROAD
HAMILTON, ON L8E 2Z3
(905) 318-7440

ATTENTION TO: Bennett Sabourin

PROJECT: 220141

AGAT WORK ORDER: 24T221637

SOIL ANALYSIS REVIEWED BY: Sukhwinder Randhawa, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 21, 2024

PAGES (INCLUDING COVER): 21 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 21

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:388 Main St. E, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T221637

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2024-11-15								ı	DATE REPORTI	ED: 2024-11-21	
	\$	_	CRIPTION: PLE TYPE: SAMPLED:	BH8 SS1 Soil 2024-11-11	BH8 SS7 Soil 2024-11-11	BH9 SS1 Soil 2024-11-11	BH9 SS3 Soil 2024-11-11	BH10 SS2 Soil 2024-11-12	BH10 SS6 Soil 2024-11-12	BH11 SS2 Soil 2024-11-12	BH11 SS6 Soil 2024-11-12
Parameter	Unit	G/S	RDL	6327296	6327303	6327304	6327307	6327308	6327311	6327312	6327313
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	7	6	5	6	9	6	7	6
Barium	μg/g	390	2.0	118	71.9	52.9	73.2	171	69.1	26.4	82.2
Beryllium	μg/g	5	0.5	0.9	0.7	<0.5	0.9	1.2	0.7	<0.5	8.0
Boron	μg/g	120	5	13	17	14	19	12	14	11	15
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.15	0.27	<0.10	0.25	0.26	0.19	<0.10	0.22
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	5	21	22	13	23	34	22	7	22
Cobalt	μg/g	22	0.8	9.5	11.8	7.2	13.0	16.0	12.4	3.5	11.7
Copper	μg/g	180	1.0	29.3	31.5	30.7	32.8	39.1	34.0	10.8	29.9
Lead	μg/g	120	1	117	9	12	7	41	10	22	9
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.6
Nickel	μg/g	130	1	24	26	15	28	37	27	10	29
Selenium	μg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	μg/g	25	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	23	0.50	0.55	0.64	< 0.50	0.58	0.74	0.63	<0.50	0.58
Vanadium	μg/g	86	2.0	29.3	32.7	22.1	33.1	50.4	31.5	10.0	27.7
Zinc	μg/g	340	5	95	56	48	58	83	57	68	71
Chromium, Hexavalent	μg/g	10	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	0.040	< 0.040	< 0.040	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
Mercury	μg/g	1.8	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.165	0.158	0.097	0.167	0.217	0.173	0.112	0.193
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.600	0.373	0.219	0.246	1.02	0.448	0.492	0.449
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.36	7.31	7.33	7.25	7.29	7.26	7.27	7.30

Certified By:

AGAT WORK ORDER: 24T221637

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:388 Main St. E, Milton

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2024-11-15							DATE REPORTED: 2024-11-21
		DATE S	PLE TYPE: SAMPLED:	BH12 SS1 Soil 2024-11-12	BH12 SS7 Soil 2024-11-12	DUP 1 Soil 2024-11-11	
Parameter	Unit	G/S	RDL	6327314	6327315	6327316	
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	9	6	11	
Barium	μg/g	390	2.0	161	70.1	70.8	
Beryllium	μg/g	5	0.5	1.1	0.7	0.8	
Boron	µg/g	120	5	11	13	15	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.22	0.22	0.23	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	28	18	20	
Cobalt	μg/g	22	0.8	13.4	10.5	12.4	
Copper	μg/g	180	1.0	32.2	29.3	33.7	
Lead	μg/g	120	1	47	9	8	
Molybdenum	μg/g	6.9	0.5	0.5	<0.5	0.5	
Nickel	μg/g	130	1	33	25	28	
Selenium	μg/g	2.4	0.8	<0.8	<0.8	<0.8	
Silver	μg/g	25	0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	23	0.50	0.50	< 0.50	0.50	
Vanadium	µg/g	86	2.0	38.2	23.4	25.3	
Zinc	µg/g	340	5	108	55	66	
Chromium, Hexavalent	µg/g	10	0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	μg/g	0.051	0.040	<0.040	<0.040	< 0.040	
Mercury	μg/g	1.8	0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.171	0.157	0.181	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.663	0.314	0.214	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.35	7.32	7.25	

AGAT WORK ORDER: 24T221637

PROJECT: 220141

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:388 Main St. E, Milton

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2024-11-15 DATE REPORTED: 2024-11-21

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327296-6327316 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED Sathwirds Kauf Ranchess Q COUL

SAMPLING SITE:388 Main St. E, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T221637

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Soil)

					9(/		,			
DATE RECEIVED: 2024-11-15									DATE REPORTED	: 2024-11-21
			CRIPTION: PLE TYPE: SAMPLED:	BH8 SS1 Soil 2024-11-11	BH8 SS7 Soil 2024-11-11	BH10 SS2 Soil 2024-11-12	BH10 SS6 Soil 2024-11-12	BH11 SS2 Soil 2024-11-12	BH11 SS6 Soil 2024-11-12	
Parameter	Unit	G/S	RDL	6327296	6327303	6327308	6327311	6327312	6327313	
Naphthalene	μg/g	0.75	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphthylene	μg/g	0.17	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	μg/g	58	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Fluorene	μg/g	69	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	
Phenanthrene	μg/g	7.8	0.05	< 0.05	<0.05	< 0.05	< 0.05	0.16	< 0.05	
Anthracene	μg/g	0.74	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene	μg/g	0.69	0.05	0.12	< 0.05	0.05	< 0.05	0.28	< 0.05	
Pyrene	μg/g	78	0.05	0.10	<0.05	0.05	< 0.05	0.20	<0.05	
Benzo(a)anthracene	μg/g	0.63	0.05	0.06	<0.05	<0.05	< 0.05	80.0	< 0.05	
Chrysene	μg/g	7.8	0.05	0.09	<0.05	<0.05	< 0.05	0.12	<0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	0.06	<0.05	<0.05	< 0.05	0.07	< 0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	<0.05	< 0.05	0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	<0.05	<0.05	< 0.05	0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.48	0.05	0.06	<0.05	<0.05	<0.05	<0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	7.8	0.05	0.07	<0.05	<0.05	<0.05	0.05	< 0.05	
2-and 1-methyl Naphthalene	μg/g	3.4	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	
Moisture Content	%		0.1	16.7	7.3	22.6	10.3	9.8	5.2	
Surrogate	Unit	Acceptab	ole Limits							
Naphthalene-d8	%	50-	140	70	70	80	95	100	100	
Acridine-d9	%	50-	140	70	90	75	90	80	70	

Comments:

Terphenyl-d14

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

50-140

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

70

105

95

6327296-6327313 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

80

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

105

Certificate of Analysis

AGAT WORK ORDER: 24T221637

PROJECT: 220141

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

O. Reg. 153(511) - PCBs (Soil)

				O. INC	g. 133(311 <i>)</i>	- 1 CD3 (30	11)	
DATE RECEIVED: 2024-11-15								DATE REPORTED: 2024-11-21
		SAMPLE DES	CRIPTION:	BH10 SS2	BH10 SS6	BH11 SS2	BH11 SS6	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	2024-11-12	2024-11-12	2024-11-12	2024-11-12	
Parameter	Unit	G/S	RDL	6327308	6327311	6327312	6327313	
Polychlorinated Biphenyls	μg/g	0.35	0.1	<0.1	<0.1	<0.1	<0.1	
Moisture Content	%		0.1	22.6	10.3	9.8	5.2	
Surrogate	Unit	Acceptab	le Limits					
Decachlorobiphenyl	%	50-	140	116	100	72	108	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327308-6327313 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:388 Main St. E, Milton

Certified By:

MPoprukolof

AGAT WORK ORDER: 24T221637

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:388 Main St. E, Milton

%

60-140

84

O. Reg. 153(511) - PHCs F1 - F4 (Soil) DATE RECEIVED: 2024-11-15 **DATE REPORTED: 2024-11-21** SAMPLE DESCRIPTION: BH9 SS1 BH9 SS3 DUP 1 **SAMPLE TYPE:** Soil Soil Soil DATE SAMPLED: 2024-11-11 2024-11-11 2024-11-11 Unit G/S RDL 6327304 6327307 6327316 **Parameter** Benzene 0.17 0.02 < 0.02 < 0.02 < 0.02 μg/g Toluene μg/g 6 0.05 < 0.05 < 0.05 < 0.05 Ethylbenzene 15 0.05 < 0.05 < 0.05 μg/g < 0.05 m & p-Xylene 0.05 < 0.05 < 0.05 μg/g < 0.05 o-Xylene 0.05 < 0.05 < 0.05 < 0.05 μg/g 0.05 Xylenes (Total) μg/g 25 < 0.05 < 0.05 < 0.05 F1 (C6 to C10) μg/g 65 5 <5 <5 <5 <5 F1 (C6 to C10) minus BTEX μg/g 65 <5 <5 F2 (C10 to C16) 150 10 <10 <10 <10 μg/g F3 (C16 to C34) μg/g 1300 50 <50 <50 <50 F4 (C34 to C50) μg/g 5600 50 < 50 <50 <50 NA Gravimetric Heavy Hydrocarbons 5600 50 NA NA μg/g % 0.1 9.0 Moisture Content 6.6 9.0 Unit **Acceptable Limits** Surrogate Toluene-d8 % Recovery 60-140 95 76 79

76

77

Certified By:

Terphenyl

Certificate of Analysis

AGAT WORK ORDER: 24T221637

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

_

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2024-11-15 DATE REPORTED: 2024-11-21

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327304-6327316 Results are based on sample dry weight.

SAMPLING SITE:388 Main St. E, Milton

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

SAMPLING SITE:388 Main St. E, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T221637

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-11-15								Ι	DATE REPORTED): 2024-11-21
		SAMPLE DES	CRIPTION: PLE TYPE:	BH8 SS1 Soil	BH8 SS7 Soil	BH10 SS2 Soil	BH10 SS6 Soil	BH11 SS2 Soil	BH11 SS6 Soil	
Parameter	Unit	DATE S G/S	SAMPLED: RDL	2024-11-11 6327296	2024-11-11 6327303	2024-11-12 6327308	2024-11-12 6327311	2024-11-12 6327312	2024-11-12 6327313	
F1 (C6 to C10)	μg/g	65	5	<5	<5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	65	5	<5	<5	<5	<5	<5	<5	
F2 (C10 to C16)	μg/g	150	10	<10	<10	<10	<10	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	<10	<10	<10	<10	
F3 (C16 to C34)	μg/g	1300	50	73	<50	<50	<50	<50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	73	<50	<50	<50	<50	<50	
F4 (C34 to C50)	μg/g	5600	50	52	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	5600	50	NA	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	16.7	7.3	22.6	10.3	9.8	5.2	
Surrogate	Unit	Acceptab	le Limits							
Toluene-d8	%	50-1	40	76	78	80	79	76	78	
Terphenyl	%	60-1	40	100	81	93	92	110	120	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327296-6327313 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukoloj

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 24T221637

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:388 Main St. E, Milton

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS

	O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Soil)	
DATE RECEIVED: 2024-11-15		DATE REPORTED: 2024-11-21

DATE RECEIVED. 2024-11-13						DATE REPORTED. 2024-11-21
		SAMPLE DES	CRIPTION:	BH12 SS1	BH12 SS7	
		SAMI	PLE TYPE:	Soil	Soil	
		DATE S	SAMPLED:	2024-11-12	2024-11-12	
Parameter	Unit	G/S	RDL	6327314	6327315	
F1 (C6 to C10)	μg/g	65	5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	65	5	<5	<5	
F2 (C10 to C16)	μg/g	150	10	<10	16	
F3 (C16 to C34)	μg/g	1300	50	<50	66	
F4 (C34 to C50)	μg/g	5600	50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	5600	50	NA	NA	
Moisture Content	%		0.1	19.3	8.7	
Surrogate	Unit	Acceptab	le Limits			
Toluene-d8	%	50-1	40	85	81	
Terphenyl	%	60-1	40	80	140	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327314-6327315 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprikolof

SAMPLING SITE:388 Main St. E, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T221637

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

				7. reg. 100	(011)	3 (With 1 11)	J, (UU)				
DATE RECEIVED: 2024-11-15								[DATE REPORTE	ED: 2024-11-21	
		SAMPLE DESC	RIPTION:	BH8 SS1	BH8 SS7	BH10 SS2	BH10 SS6	BH11 SS2	BH11 SS6	BH12 SS1	BH12 SS7
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
		DATE S	AMPLED:	2024-11-11	2024-11-11	2024-11-12	2024-11-12	2024-11-12	2024-11-12	2024-11-12	2024-11-12
Parameter	Unit	G/S	RDL	6327296	6327303	6327308	6327311	6327312	6327313	6327314	6327315
Dichlorodifluoromethane	μg/g	25	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
Vinyl Chloride	ug/g	0.022	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02
Bromomethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	ug/g	5.8	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Acetone	ug/g	28	0.50	< 0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	< 0.50
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Methylene Chloride	ug/g	0.96	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trans- 1,2-Dichloroethylene	ug/g	0.75	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Methyl tert-butyl Ether	ug/g	1.4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
1,1-Dichloroethane	ug/g	11	0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02
Methyl Ethyl Ketone	ug/g	44	0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50
Cis- 1,2-Dichloroethylene	ug/g	30	0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02
Chloroform	ug/g	0.18	0.04	< 0.04	<0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04	< 0.04
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
1,1,1-Trichloroethane	ug/g	3.4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Carbon Tetrachloride	ug/g	0.12	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05
Benzene	ug/g	0.17	0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02
1,2-Dichloropropane	ug/g	0.085	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Trichloroethylene	ug/g	0.52	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Bromodichloromethane	ug/g	13	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methyl Isobutyl Ketone	ug/g	4.3	0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50
1,1,2-Trichloroethane	ug/g	0.05	0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	<0.04
Toluene	ug/g	6	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Dibromochloromethane	ug/g	9.4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylene Dibromide	ug/g	0.05	0.04	< 0.04	< 0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04	<0.04
Tetrachloroethylene	ug/g	2.3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	< 0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04
Chlorobenzene	ug/g	2.7	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
Ethylbenzene	ug/g	15	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
m & p-Xylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Certified By:

NPopukolof

SAMPLING SITE:388 Main St. E, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T221637

PROJECT: 220141

SAMPLED BY:BS

ATTENTION TO: Bennett Sabourin

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-11-15								I	DATE REPORTE	ED: 2024-11-21	
	S	SAMPLE DESC SAMF	CRIPTION: PLE TYPE:	BH8 SS1 Soil	BH8 SS7 Soil	BH10 SS2 Soil	BH10 SS6 Soil	BH11 SS2 Soil	BH11 SS6 Soil	BH12 SS1 Soil	BH12 SS7 Soil
			AMPLED:	2024-11-11	2024-11-11	2024-11-12	2024-11-12	2024-11-12	2024-11-12	2024-11-12	2024-11-12
Parameter	Unit	G/S	RDL	6327296	6327303	6327308	6327311	6327312	6327313	6327314	6327315
Bromoform	ug/g	0.26	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	ug/g	2.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
o-Xylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	ug/g	6	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
1,4-Dichlorobenzene	ug/g	0.097	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
1,2-Dichlorobenzene	ug/g	4.3	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Xylenes (Total)	ug/g	25	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichloropropene (Cis + Trans)	μg/g	0.083	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
n-Hexane	μg/g	34	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Moisture Content	%		0.1	16.7	7.3	22.6	10.3	9.8	5.2	19.3	8.7
Surrogate	Unit	Acceptabl	e Limits								
Toluene-d8	% Recovery	50-1	40	76	78	80	79	76	78	85	81
4-Bromofluorobenzene	% Recovery	50-1	40	92	91	95	99	92	102	99	96

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327296-6327315 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

SAMPLING SITE:388 Main St. E, Milton

AGAT WORK ORDER: 24T221637
ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

			Soi	l Ana	alysis	5								
RPT Date: Nov 21, 2024		1	DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SP	KE
PARAMETER	Batch Samp	e Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 10	ptable nits	Recovery		ptable nits
	Daten Id		'			Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)													
Antimony	6327296 6327296	8.0>	<0.8	NA	< 0.8	98%	70%	130%	86%	80%	120%	79%	70%	130%
Arsenic	6327296 6327296	7	7	0.0%	< 1	128%	70%	130%	102%	80%	120%	102%	70%	130%
Barium	6327296 6327296	118	130	9.7%	< 2.0	121%	70%	130%	105%	80%	120%	107%	70%	130%
Beryllium	6327296 6327296	0.9	0.9	NA	< 0.5	118%	70%	130%	117%	80%	120%	122%	70%	130%
Boron	6327296 6327296	13	12	NA	< 5	91%	70%	130%	101%	80%	120%	81%	70%	130%
Boron (Hot Water Soluble)	6321790	<0.10	<0.10	NA	< 0.10	104%	60%	140%	101%	70%	130%	102%	60%	140%
Cadmium	6327296 6327296	< 0.5	<0.5	NA	< 0.5	119%	70%	130%	101%	80%	120%	106%	70%	130%
Chromium	6327296 6327296	21	22	NA	< 5	106%	70%	130%	94%	80%	120%	NA	70%	130%
Cobalt	6327296 6327296	9.5	10.5	10.0%	< 0.8	94%	70%	130%	95%	80%	120%	92%	70%	130%
Copper	6327296 6327296	29.3	30.8	5.0%	< 1.0	104%	70%	130%	100%	80%	120%	NA	70%	130%
Lead	6327296 6327296	117	140	17.9%	< 1	109%	70%	130%	99%	80%	120%	91%	70%	130%
Molybdenum	6327296 6327296	< 0.5	0.5	NA	< 0.5	110%	70%	130%	100%	80%	120%	105%	70%	130%
Nickel	6327296 6327296	24	25	4.1%	< 1	114%	70%	130%	103%	80%	120%	98%	70%	130%
Selenium	6327296 6327296	8.0>	<0.8	NA	< 0.8	107%	70%	130%	103%	80%	120%	104%	70%	130%
Silver	6327296 6327296	<0.5	<0.5	NA	< 0.5	127%	70%	130%	105%	80%	120%	105%	70%	130%
Thallium	6327296 6327296	< 0.5	<0.5	NA	< 0.5	130%	70%	130%	115%	80%	120%	111%	70%	130%
Uranium	6327296 6327296	0.55	0.60	NA	< 0.50	94%	70%	130%	89%	80%	120%	98%	70%	130%
Vanadium	6327296 6327296	29.3	30.5	4.0%	< 2.0	125%	70%	130%	86%	80%	120%	106%	70%	130%
Zinc	6327296 6327296	95	100	5.1%	< 5	117%	70%	130%	97%	80%	120%	NA	70%	130%
Chromium, Hexavalent	6321798	<0.2	<0.2	NA	< 0.2	93%	70%	130%	89%	80%	120%	72%	70%	130%
Cyanide, WAD	6318026	<0.040	<0.040	NA	< 0.040	99%	70%	130%	95%	80%	120%	76%	70%	130%
Mercury	6327296 6327296	<0.10	<0.10	NA	< 0.10	101%	70%	130%	94%	80%	120%	94%	70%	130%
Electrical Conductivity (2:1)	6327296 6327296	0.165	0.189	13.6%	< 0.005	95%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	6327296 6327296	0.600	0.578	3.7%	NA	NA								
pH, 2:1 CaCl2 Extraction	6327035	7.09	7.26	2.4%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

Boron (Hot Water Soluble) 6327552 0.15 0.17 NA < 0.10 106% 60% 140% 102% 70% 130% 98% 60% 140%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T221637

PROJECT: 220141 ATTENTION TO: Bennett Sabourin

SAMPLING SITE:388 Main St. E, Milton SAMPLED BY:BS

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Nov 21, 2024			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
DADAMETED	Batak	Sample	D #4	D #0	RPD	Method Blank	Measured		ptable	D	Lir	ptable	D		ptable
PARAMETER	Batch	ld	Dup #1	Dup #2	KPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4	(with PAHs a	and VOC)	(Soil)												
F1 (C6 to C10)	6327315 6	327315	<5	<5	NA	< 5	97%	60%	140%	102%	60%	140%	86%	60%	140%
F2 (C10 to C16)	6327316 6	327316	< 10	< 10	NA	< 10	113%	60%	140%	96%	60%	140%	96%	60%	140%
F3 (C16 to C34)	6327316 6	327316	< 50	< 50	NA	< 50	114%	60%	140%	114%	60%	140%	129%	60%	140%
F4 (C34 to C50)	6327316 6	6327316	< 50	< 50	NA	< 50	81%	60%	140%	104%	60%	140%	94%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6327350		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	78%	50%	140%	90%	50%	140%
Acenaphthylene	6327350		<0.05	< 0.05	NA	< 0.05	83%	50%	140%	95%	50%	140%	78%	50%	140%
Acenaphthene	6327350		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	80%	50%	140%	93%	50%	140%
Fluorene	6327350		<0.05	< 0.05	NA	< 0.05	84%	50%	140%	78%	50%	140%	88%	50%	140%
Phenanthrene	6327350		<0.05	<0.05	NA	< 0.05	86%	50%	140%	75%	50%	140%	83%	50%	140%
Anthracene	6327350		<0.05	<0.05	NA	< 0.05	72%	50%	140%	73%	50%	140%	83%	50%	140%
Fluoranthene	6327350		<0.05	<0.05	NA	< 0.05	90%	50%	140%	78%	50%	140%	85%	50%	140%
Pyrene	6327350		<0.05	<0.05	NA	< 0.05	90%	50%	140%	78%	50%	140%	88%	50%	140%
Benzo(a)anthracene	6327350		<0.05	<0.05	NA	< 0.05	82%	50%	140%	85%	50%	140%	93%	50%	140%
Chrysene	6327350		<0.05	<0.05	NA	< 0.05	100%	50%	140%	88%	50%	140%	110%	50%	140%
Benzo(b)fluoranthene	6327350		<0.05	<0.05	NA	< 0.05	81%	50%	140%	88%	50%	140%	85%	50%	140%
· /	6327350														140%
Benzo(k)fluoranthene			< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	85%	50%	140%	105%	50%	
Benzo(a)pyrene	6327350		<0.05	<0.05	NA	< 0.05	91%	50%	140%	78%	50%	140%	85%	50%	140%
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	6327350 6327350		<0.05 <0.05	<0.05 <0.05	NA NA	< 0.05 < 0.05	98% 115%	50% 50%	140% 140%	73% 88%	50% 50%	140% 140%	90% 103%	50% 50%	140% 140%
Benzo(g,h,i)perylene	6327350		<0.05	<0.05	NA	< 0.05	102%	50%	140%	93%	50%	140%	88%	50%	140%
O. D 450/544) . VOO (with D	110) (0 - 11)														
O. Reg. 153(511) - VOCs (with P		2007045	0.05	0.05	NIA	0.05	040/	500 /	4.400/	4000/	500 /	4.400/	000/	F00/	4.400/
Dichlorodifluoromethane	6327315 6		<0.05	<0.05	NA	< 0.05	61%	50%	140%	109%	50%	140%	80%	50%	140%
Vinyl Chloride	6327315 6		<0.02	<0.02	NA	< 0.02	128%	50%	140%	84%	50%	140%	111%	50%	140%
Bromomethane	6327315 6		<0.05	<0.05	NA	< 0.05	110%	50%	140%	121%	50%	140%	84%	50%	140%
Trichlorofluoromethane Acetone	6327315 6 6327315 6		<0.05 <0.50	<0.05 <0.50	NA NA	< 0.05 < 0.50	109% 97%	50% 50%	140% 140%	102% 113%	50% 50%	140% 140%	78% 102%	50% 50%	140% 140%
1,1-Dichloroethylene	6327315 6		<0.05	<0.05	NA	< 0.05	91%	50%	140%	101%	60%	130%	95%	50%	140%
Methylene Chloride	6327315 6	327315	<0.05	<0.05	NA	< 0.05	96%	50%	140%	98%	60%	130%	93%	50%	140%
Trans- 1,2-Dichloroethylene	6327315 6		<0.05	<0.05	NA	< 0.05	75%		140%	97%		130%	74%		140%
Methyl tert-butyl Ether	6327315 6		<0.05	<0.05	NA	< 0.05	113%	50%		88%	60%	130%	95%	50%	140%
1,1-Dichloroethane	6327315 6	327315	<0.02	<0.02	NA	< 0.02	96%	50%	140%	104%	60%	130%	106%	50%	140%
Methyl Ethyl Ketone	6327315 6	327315	<0.50	<0.50	NA	< 0.50	112%	50%	140%	95%	50%	140%	126%	50%	140%
Cis- 1,2-Dichloroethylene	6327315 6	327315	<0.02	< 0.02	NA	< 0.02	101%	50%	140%	103%	60%	130%	103%	50%	140%
Chloroform	6327315 6	327315	<0.04	< 0.04	NA	< 0.04	95%	50%	140%	111%	60%	130%	109%	50%	140%
1,2-Dichloroethane	6327315 6	327315	< 0.03	< 0.03	NA	< 0.03	102%	50%	140%	103%	60%	130%	74%	50%	140%
1,1,1-Trichloroethane	6327315 6	327315	<0.05	<0.05	NA	< 0.05	75%	50%	140%	100%	60%	130%	105%	50%	140%
Carbon Tetrachloride	6327315 6	327315	<0.05	<0.05	NA	< 0.05	105%	50%	140%	102%	60%	130%	79%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 14 of 21

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

AGAT WORK ORDER: 24T221637

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141 **ATTENTION TO: Bennett Sabourin SAMPLED BY:BS**

SAMPLING SITE:388 Main St. E, Milton

						alysis							1		
RPT Date: Nov 21, 2024			C	DUPLICATI	E	ļ	REFERE			METHOD			MAT	RIX SPI	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 11	eptable mits	Recovery	Lie	ptable nits
		Id	·				value	Lower	Upper		Lower	Upper	·	Lower	Uppe
Benzene	6327315	6327315	< 0.02	< 0.02	NA	< 0.02	93%	50%	140%	104%	60%	130%	92%	50%	140%
1,2-Dichloropropane	6327315	6327315	< 0.03	< 0.03	NA	< 0.03	75%	50%	140%	84%	60%	130%	93%	50%	140%
Trichloroethylene	6327315	6327315	< 0.03	< 0.03	NA	< 0.03	85%	50%	140%	84%	60%	130%	89%	50%	140%
Bromodichloromethane	6327315	6327315	<0.05	< 0.05	NA	< 0.05	102%	50%	140%	103%	60%	130%	92%	50%	140%
Methyl Isobutyl Ketone	6327315	6327315	<0.50	<0.50	NA	< 0.50	83%	50%	140%	100%	50%	140%	98%	50%	140%
1,1,2-Trichloroethane	6327315	6327315	< 0.04	< 0.04	NA	< 0.04	85%	50%	140%	95%	60%	130%	77%	50%	140%
Toluene	6327315	6327315	< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	111%	60%	130%	87%	50%	140%
Dibromochloromethane	6327315	6327315	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	93%	60%	130%	87%	50%	140%
Ethylene Dibromide	6327315	6327315	<0.04	<0.04	NA	< 0.04	67%	50%	140%	86%	60%	130%	102%	50%	140%
Tetrachloroethylene	6327315		<0.05	<0.05	NA	< 0.05	88%	50%	140%	99%	60%	130%	78%	50%	140%
1,1,1,2-Tetrachloroethane	6327315	6327315	< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	103%	60%	130%	75%	50%	140%
Chlorobenzene	6327315	6327315	< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	100%	60%	130%	86%	50%	140%
Ethylbenzene	6327315	6327315	< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	111%	60%	130%	105%	50%	140%
m & p-Xylene	6327315	6327315	<0.05	<0.05	NA	< 0.05	95%	50%	140%	118%	60%	130%	101%	50%	140%
Bromoform	6327315	6327315	<0.05	<0.05	NA	< 0.05	69%	50%	140%	65%	60%	130%	67%	50%	140%
Styrene	6327315		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	95%	60%	130%	88%	50%	140%
1,1,2,2-Tetrachloroethane	6327315	6327315	< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	108%	60%	130%	89%	50%	140%
o-Xylene	6327315	6327315	< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	94%	60%	130%	104%	50%	140%
1,3-Dichlorobenzene	6327315	6327315	<0.05	<0.05	NA	< 0.05	100%	50%	140%	103%	60%	130%	99%	50%	140%
1,4-Dichlorobenzene	6327315	6327315	<0.05	<0.05	NA	< 0.05	103%	50%	140%	102%	60%	130%	97%	50%	140%
1,2-Dichlorobenzene	6327315	6327315	< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	97%	60%	130%	101%	50%	140%
n-Hexane	6327315	6327315	<0.05	<0.05	NA	< 0.05	76%	50%	140%	104%	60%	130%	87%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	(Soil)														
Benzene	6324226		<0.02	< 0.02	NA	< 0.02	92%	60%	140%	107%	60%	140%	113%	60%	140%
Toluene	6324226		<0.05	< 0.05	NA	< 0.05	95%	60%	140%	92%	60%	140%	115%		140%
Ethylbenzene	6324226		< 0.05	< 0.05	NA	< 0.05	80%	60%	140%	73%	60%	140%	74%	60%	140%
m & p-Xylene	6324226		<0.05	<0.05	NA	< 0.05	109%	60%	140%	112%	60%	140%	104%	60%	140%
o-Xylene	6324226		<0.05	<0.05	NA	< 0.05	88%	60%	140%	93%	60%	140%	102%	60%	140%
F1 (C6 to C10)	6324226		<5	<5	NA	< 5	95%	60%	140%	92%	60%	140%	91%	60%	140%
Comments: When the average of the	ne sample and	d duplicate	results is l	less than 5	x the RD	L, the Rela	tive Perce	nt Diffe	rence (f	RPD) will b	oe indic	ated as	Not Applie	cable (N	IA).
O. Reg. 153(511) - PHCs F1 - F4	(with VOC)	(Soil)													
F1 (C6 to C10)	6327315		<5	<5	NA	< 5	97%	60%	140%	102%	60%	140%	86%	60%	140%
O. Reg. 153(511) - PCBs (Soil)															
5 (- , - , - , - , - , - , - , - , - ,															

AGAT QUALITY ASSURANCE REPORT (V1)

6317352

Polychlorinated Biphenyls

Page 15 of 21

50% 140% 102% 50% 140%

NA

< 0.1

104% 50% 140%

97%

< 0.1

< 0.1

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

SAMPLING SITE:388 Main St. E, Milton

AGAT WORK ORDER: 24T221637

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

	Trace Organics Analysis (Continued)														
PT Date: Nov 21, 2024 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE															
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		otable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper

Method Summary

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

AGAT WORK ORDER: 24T221637

ATTENTION TO: Bennett Sabourin

SAMPLING SITE:388 Main St. E, Milton

CAMIL EING GITE:000 Main Ot. E, Minton	FLING SITE. 300 Main St. E, Millon					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Soil Analysis						
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES			
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS			
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER			
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS			
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS			
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE			
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES			
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE			

Method Summary

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

AGAT WORK ORDER: 24T221637

ATTENTION TO: Bennett Sabourin

SAMPLING SITE:388 Main St. E, Milton

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	1		
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID

FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100

Method Summary

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 24T221637 PROJECT: 220141 **ATTENTION TO: Bennett Sabourin**

SAMPLING SITE:388 Main St. E, Milton

SAMPLING SITE:388 Main St. E, Milton		SAMPLED BY:BS					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE				
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS				
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID				
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

AGAT WORK ORDER: 24T221637

ATTENTION TO: Bennett Sabourin

SAMPLING SITE:388 Main St. E, Milt	on	SAMPLED BY:BS								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS							
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS							
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS							

Have feedback? Scan here for a quick survey!

Ph: 905

Laboratory Use Only 5835 Coopers Avenue

MISSISSAUGA, UNTAHU L4Z 11Z		111	122	10
712.5100 Fax: 905,712.5122	Work Order #:	-	1	-
webearth.agatlabs.com			- 1	_

Cooler Quantity:		^	
Arrival Temperatures: Depot Temperatures:	5-9	160	16.6
Custody Seal Intact: Notes:	□Yes	□ No	

Chain of Custody Recor	hain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)													Tempe Tempe			916	201	0.6
	OSUMAT Subouti	10		(Pleas	gulatory Requirements: e check all applicable boxes)									dy Seal		∵Ye	s []	□No	□N/A
	ruys Rd,	Hamilto	7 1	T	Regulation 153/04		Sewer Use Sanitary Storm Region				Turnaround Time (TAT) Required: Regular TAT 5 to 7 Business Days								
Phone: Reports to be sent to: 1. Email:	Fax:	at.ca			Soil Texture (Check One) Objective				v. Water Quality ectives (PWQO)				Rush TAT (Rush Surcharges Apply)						
2. Email: p markesic & salmat, cu				- -	Regulation 558 Other CCME Indicate One						3 Business 2 Business Next Business Days Days Day OR Date Required (Rush Surcharges May Apply):								
Site Location: 386 Mura 54.	0141 E. M.A	lon.		-	his submission for a Record of Site Condition (RSC)? Yes No	Cei	eport rtifica Yes	te of	Ana					*TAT is	exclusi	ve of wee	r notificatio kends and	statutory	holidays
Sampled By: AGAT Quote #: 165 q 3 2 4 3 8 3 3 Please note: If quotation number is	P0:		analysis	Leg	gal Sample 🔲	Crvi, DOC	0.	Reg 15	3		П	ge	O. Reg	-	O. Reg	-4		1 1	(N/Y)
Invoice Information: Company: Contact: Address: Email:	Bi	II To Same: Ye	es 📝 No 🗔	Sar GW O P	Ground Water SD Sediment Oil SW Surface Water Paint R Rock/Shale Soil	Field Filtered - Metals, Hg, (& Inorganics	- □ CrVI, □ Hg, □ HWSB	F1-F4 PHCs		Arnelors	Regulation 406 Characterization Package	als, BTEX, F1-F4	on 406 SPLP Rainwater Leach	Disposal Characteri	☐ Moisture ☐			Potentially Hazardous or High Concentration (V/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals -	. 5	200	PCBs: A	Regulat	pH, Metals, EC, SAR		Landfill TCLP:	Corrosivity:		100	Potential
1. 848 550	Nov II	AM PM		S			V		1	1	/								
2. BH8 \$57	May 11	AM PM	H	5		n_i	1		1	1	/				1				
3. BHY 551,	Nov 11	AM PM		5			1		1			H							
4. BHY \$5,3	1400 81	AM PM	3	5			1		1									7.	
5. BHIU 552	New 12	AM PM	S	5			1		1	10	1								
6. BH 10 556	Noor2	AM PM		5			1	-	1	V.	1 1								
7. BATT 552	7100 22	AM PM		5			V		1	V .	/ ~								
8. BHI 556	11/2012	AM PM	5	5			1		1	1	1 -								
9. BHIL 551	No. 12	AM PM	3	5			J		V	1									
10. BHIZ 557	May 17	AM PM	3	3	THE ACT I		1		1	V									
11. Puf	Nov u	AM PM		5			J		V	И									
Samples Relinquished By (Frint Name and Sign):		Date	Time	-10 -	Samples Recoived B# (Print Name and Sign):					. //	Date	110	T	Time ,		T			

Samples Relinquished By (Print Name and Sign):

Samples Relinquished By (Print Name and Sign):

Samples Received By (Print Name and Sign):

Time

_ of _

Page ____

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT 401 GRAYS ROAD HAMILTON, ON L8E 2Z3 (905) 318-7440

ATTENTION TO: Bennett Sabourin

PROJECT: 220141

AGAT WORK ORDER: 24T221642

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Radhika Chakraberty, Trace Organics Lab Manager

DATE REPORTED: Nov 21, 2024

PAGES (INCLUDING COVER): 23 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

**!---

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 23

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:388 Main St. E, Milton

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2024-11-15									DATE REPORTE	ED: 2024-11-21	
Para market		DATE	PLE TYPE: SAMPLED:	BH1 SS2 Soil 2024-11-14	BH1 SS6 Soil 2024-11-14		BH2 SS2 Soil 2024-11-13	, nni	BH2 SS3 Soil 2024-11-13	BH3 SS1 Soil 2024-11-12	BH3 SS2 Soil 2024-11-12
Parameter	Unit	G/S 7.5	RDL 0.8	6327552 <0.8	6327554 <0.8	RDL 0.8	6327555 <0.8	RDL 0.8	6327556 <0.8	6327557 <0.8	6327558 <0.8
Antimony Arsenic	µg/g	7.5 18	1	<0.6 7	<0.6 7	1	<0.6 8	1	<0.6 7	<0.6 5	<0.6
Barium	µg/g	390	2.0	93.7	73.1	2.0	622	2.0	110	91.4	73.0
Beryllium	μg/g	5	0.5	0.8	0.8	0.5	0.9	0.5	0.8	0.5	0.8
Boron	μg/g	120	5	13	17	5	20	5	17	12	14
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.15	0.37	0.10	0.28	0.10	0.25	0.79	0.35
Cadmium	μg/g	1.2	0.10	<0.5	<0.5	0.10	0.5	0.10	<0.5	<0.5	<0.5
Chromium	µg/g µg/g	160	5	20	20	5	28	5	21	12	20
Cobalt	μg/g μg/g	22	0.8	10.7	10.9	0.8	9.6	0.8	12.0	4.0	11.4
Copper		180	1.0	33.7	31.2	1.0	34.1	1.0	36.4	26.2	31.8
Lead	μg/g	120	1.0	14	10	1.0	165	1.0	22	217	17
Molybdenum	µg/g µg/g	6.9	0.5	0.6	<0.5	0.5	0.6	0.5	0.8	<0.5	0.6
Nickel	μg/g μg/g	130	1	25	26	1	22	0.5	27	10	27
Selenium	μg/g	2.4	0.8	<0.8	<0.8	0.8	<0.8	0.8	<0.8	<0.8	<0.8
Silver	μg/g	25	0.5	<0.5	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	0.5	<0.5	0.5	<0.5	<0.5	<0.5
Uranium	μg/g	23	0.50	0.61	0.52	0.50	0.71	0.50	0.60	<0.50	0.51
Vanadium	μg/g	86	2.0	26.7	26.5	2.0	27.7	2.0	26.6	13.6	27.3
Zinc	µg/g	340	5	64	57	50	2100	5	77	86	62
Chromium, Hexavalent	μg/g	10	0.2	<0.2	<0.2	0.2	<0.2	0.2	<0.2	<0.2	<0.2
Cyanide, WAD	μg/g	0.051	0.040	<0.040	<0.040	0.040	<0.040	0.040	<0.040	<0.040	<0.040
Mercury	μg/g	1.8	0.10	<0.10	<0.10	0.10	<0.10	0.10	<0.10	0.18	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.222	0.227	0.005	0.356	0.005	0.240	0.382	0.330
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	1.54	0.773	N/A	0.904	N/A	1.08	2.14	1.82
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.20	7.21	NA	8.44	NA	7.59	7.41	7.32

Certificate of Analysis

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

SAMPLING SITE:388 Main St. E, Milton

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2024-11-15									DATE REPORTED: 2024-11-21
		DATE S	PLE TYPE: SAMPLED:	BH5 SS1 Soil 2024-11-15	BH5 SS2 Soil 2024-11-15	BH5 SS5 Soil 2024-11-15	BH4 SS2 Soil 2024-11-14	BH4 SS6 Soil 2024-11-14	
Parameter	Unit	G/S	RDL	6327559	6327572	6327573	6327574	6327575	
Antimony	μg/g	7.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	6	6	7	6	6	
Barium	μg/g	390	2.0	90.0	92.3	74.1	94.4	86.5	
Beryllium	μg/g	5	0.5	0.7	0.8	0.7	0.8	0.7	
Boron	μg/g	120	5	7	9	13	13	14	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	1.00	0.28	0.11	0.11	0.16	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	20	22	18	19	19	
Cobalt	μg/g	22	0.8	11.7	14.7	11.0	10.3	10.9	
Copper	μg/g	180	1.0	24.8	25.8	54.8	28.9	34.4	
Lead	μg/g	120	1	57	32	9	9	14	
Molybdenum	μg/g	6.9	0.5	<0.5	<0.5	0.6	0.8	<0.5	
Nickel	μg/g	130	1	22	27	26	25	26	
Selenium	μg/g	2.4	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	
Silver	μg/g	25	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	23	0.50	< 0.50	0.52	0.55	0.55	< 0.50	
Vanadium	μg/g	86	2.0	27.7	31.1	24.3	26.5	24.5	
Zinc	μg/g	340	5	92	77	59	53	56	
Chromium, Hexavalent	μg/g	10	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	μg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	< 0.040	
Mercury	μg/g	1.8	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	1.22	1.04	0.281	0.197	0.184	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	7.46	6.62	1.61	1.26	0.495	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.08	7.17	7.14	7.06	7.18	

AGAT WORK ORDER: 24T221642

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2024-11-15 DATE REPORTED: 2024-11-21

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327552-6327554 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter

6327555 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

SAMPLING SITE:388 Main St. E, Milton

Dilution required, RDL has been increased accordingly.

6327556-6327575 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED S NIVINE BASILY O CHEMIST

SAMPLING SITE:388 Main St. E, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Soil)

				O. INC	g. 133(311 <i>)</i>	- FAI 15 (30	11 <i>)</i>			
DATE RECEIVED: 2024-11-15								I	DATE REPORTED): 2024-11-21
		_	CRIPTION: PLE TYPE: SAMPLED:	BH1 SS2 Soil 2024-11-14	BH1 SS6 Soil 2024-11-14	BH5 SS1 Soil 2024-11-15	BH5 SS2 Soil 2024-11-15	BH4 SS2 Soil 2024-11-14	BH4 SS6 Soil 2024-11-14	
Parameter	Unit	G/S	RDL	6327552	6327554	6327559	6327572	6327574	6327575	
Naphthalene	μg/g	0.75	0.05	< 0.05	< 0.05	5.29	5.76	< 0.05	<0.05	
Acenaphthylene	μg/g	0.17	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Acenaphthene	μg/g	58	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Fluorene	μg/g	69	0.05	< 0.05	<0.05	< 0.05	0.09	< 0.05	<0.05	
Phenanthrene	μg/g	7.8	0.05	< 0.05	<0.05	0.06	0.10	< 0.05	<0.05	
Anthracene	μg/g	0.74	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Fluoranthene	μg/g	0.69	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Pyrene	μg/g	78	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(a)anthracene	μg/g	0.63	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Chrysene	μg/g	7.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.48	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(g,h,i)perylene	μg/g	7.8	0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	
2-and 1-methyl Naphthalene	μg/g	3.4	0.05	< 0.05	< 0.05	4.12	4.77	< 0.05	<0.05	
Moisture Content	%		0.1	15.3	8.6	15.2	14.0	13.4	9.3	
Surrogate	Unit	Acceptab	le Limits							
Naphthalene-d8	%	50-1	140	80	80	70	70	70	90	
Acridine-d9	%	50-1	140	100	75	100	95	85	70	
Terphenyl-d14	%	50-	140	90	70	75	75	95	105	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327552-6327575 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 24T221642

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:388 Main St. E, Milton

O. Reg. 153(511) - PCBs (Soil)

				• • • • • • • • • • • • • • • • • • • •	9	. 020 (00	,	
DATE RECEIVED: 2024-11-15								DATE REPORTED: 2024-11-21
		SAMPLE DESC	CRIPTION:	BH1 SS2	BH1 SS6	BH4 SS2	BH4 SS6	
		SAMP	LE TYPE:	Soil	Soil	Soil	Soil	
		DATE S	AMPLED:	2024-11-14	2024-11-14	2024-11-14	2024-11-14	
Parameter	Unit	G/S	RDL	6327552	6327554	6327574	6327575	
Polychlorinated Biphenyls	μg/g	0.35	0.1	<0.1	<0.1	<0.1	<0.1	
Moisture Content	%		0.1	15.3	8.6	13.4	9.3	
Surrogate	Unit	Acceptabl	e Limits					
Decachlorobiphenyl	%	50-1	40	92	96	88	80	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 6327552-6327575 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 24T221642

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:388 Main St. E, Milton

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2024-11-15								DATE REPORTED: 2024-11-21
	s	AMPLE DESC		BH2 SS2	BH2 SS3	BH3 SS1	BH3 SS2	
		SAME	PLE TYPE:	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2024-11-13	2024-11-13	2024-11-12	2024-11-12	
Parameter	Unit	G/S	RDL	6327555	6327556	6327557	6327558	
Benzene	μg/g	0.17	0.02	<0.02	<0.02	<0.02	<0.02	
Toluene	μg/g	6	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Ethylbenzene	μg/g	15	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
m & p-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	<0.05	
o-Xylene	μg/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Xylenes (Total)	μg/g	25	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
F1 (C6 to C10)	μg/g	65	5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	65	5	<5	<5	<5	<5	
F2 (C10 to C16)	μg/g	150	10	<10	<10	<10	<10	
F3 (C16 to C34)	μg/g	1300	50	<50	<50	<50	<50	
F4 (C34 to C50)	μg/g	5600	50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	5600	50	NA	NA	NA	NA	
Moisture Content	%		0.1	15.2	11.6	22.6	18.9	
Surrogate	Unit	Acceptab	le Limits					
Toluene-d8	% Recovery	60-1	40	100	88	117	104	
Terphenyl	%	60-1	40	76	93	70	79	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 24T221642

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2024-11-15 DATE REPORTED: 2024-11-21

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327555-6327558 Results are based on sample dry weight.

SAMPLING SITE:388 Main St. E, Milton

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE:388 Main St. E, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLED BY:BS

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-11-15								ı	DATE REPORTE	D: 2024-11-21
		SAMPLE DES		BH1 SS2	BH1 SS6	BH5 SS1	BH5 SS2	BH4 SS2	BH4 SS6	
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2024-11-14	2024-11-14	2024-11-15	2024-11-15	2024-11-14	2024-11-14	
Parameter	Unit	G/S	RDL	6327552	6327554	6327559	6327572	6327574	6327575	
F1 (C6 to C10)	μg/g	65	5	<5	<5	3230	3290	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	65	5	<5	<5	2440	2260	<5	<5	
F2 (C10 to C16)	μg/g	150	10	<10	<10	701	384	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	696	378	<10	<10	
F3 (C16 to C34)	μg/g	1300	50	<50	<50	<50	<50	<50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50	<50	<50	<50	<50	
F4 (C34 to C50)	μg/g	5600	50	<50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	5600	50	NA	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	15.3	8.6	15.2	14.0	13.4	9.3	
Surrogate	Unit	Acceptab	le Limits							
Toluene-d8	%	50-1	40	89	78	75	75	83	84	
Terphenyl	%	60-1	40	96	87	73	82	78	85	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327552-6327575 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraberty

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 24T221642

PROJECT: 220141

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:388 Main St. E, Milton

O. Reg. 153(511) - PHCs F1 - F4 (with VOC) (Soil)

DATE RECEIVED: 2024-11-15					DATE REPORTED: 2024-11-2
	S	SAMPLE DESC	RIPTION:	BH5 SS5	
		SAMP	LE TYPE:	Soil	
		DATE S	AMPLED:	2024-11-15	
Parameter	Unit	G/S	RDL	6327573	
F1 (C6 to C10)	µg/g	65	5	<5	
-1 (C6 to C10) minus BTEX	μg/g	65	5	<5	
F2 (C10 to C16)	μg/g	150	10	<10	
F3 (C16 to C34)	μg/g	1300	50	<50	
=4 (C34 to C50)	μg/g	5600	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	5600	50	NA	
Moisture Content	%		0.1	13.8	
Surrogate	Unit	Acceptabl	e Limits		
Toluene-d8	%	50-1	40	107	
Terphenyl	%	60-1	40	77	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327573 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE:388 Main St. E, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-11-15								Ι	DATE REPORTED: 2024-11-21				
_		SAMPLE DESCRI SAMPLE DATE SAM	TYPE: MPLED:	BH1 SS2 Soil 2024-11-14	BH1 SS6 Soil 2024-11-14	BH5 SS1 Soil 2024-11-15	BH5 SS2 Soil 2024-11-15	BH5 SS5 Soil 2024-11-15	BH4 SS2 Soil 2024-11-14	BH4 SS6 Soil 2024-11-14			
Parameter	Unit	G/S	RDL	6327552	6327554	6327559	6327572	6327573	6327574	6327575			
Dichlorodifluoromethane	μg/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			
Vinyl Chloride	ug/g		0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			
Bromomethane	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			
Trichlorofluoromethane	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			
Acetone	ug/g		0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50			
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05			
Methylene Chloride	ug/g	0.96	0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05			
Trans- 1,2-Dichloroethylene	ug/g	0.75	0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05			
Methyl tert-butyl Ether	ug/g	1.4	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
1,1-Dichloroethane	ug/g	11	0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02			
Methyl Ethyl Ketone	ug/g	44	0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50			
Cis- 1,2-Dichloroethylene	ug/g	30	0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	<0.02			
Chloroform	ug/g	0.18	0.04	< 0.04	< 0.04	< 0.04	<0.04	< 0.04	< 0.04	<0.04			
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03			
1,1,1-Trichloroethane	ug/g	3.4	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05			
Carbon Tetrachloride	ug/g	0.12	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05			
Benzene	ug/g	0.17	0.02	< 0.02	< 0.02	20.2	25.8	< 0.02	< 0.02	<0.02			
1,2-Dichloropropane	ug/g	0.085	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03			
Trichloroethylene	ug/g	0.52	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03			
Bromodichloromethane	ug/g	13	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05			
Methyl Isobutyl Ketone	ug/g	4.3	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50			
1,1,2-Trichloroethane	ug/g	0.05	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04			
Toluene	ug/g	6	0.05	< 0.05	<0.05	76.0	145	< 0.05	<0.05	<0.05			
Dibromochloromethane	ug/g	9.4	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05			
Ethylene Dibromide	ug/g	0.05	0.04	< 0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04			
Tetrachloroethylene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			
1,1,1,2-Tetrachloroethane	ug/g		0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			
Chlorobenzene	ug/g		0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			
Ethylbenzene	ug/g		0.05	<0.05	<0.05	118	139	<0.05	<0.05	<0.05			
m & p-Xylene	ug/g		0.05	<0.05	<0.05	410	499	<0.05	<0.05	<0.05			

Certified By:

SAMPLING SITE:388 Main St. E, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-11-15								DATE REPORTED: 2024-11-21					
	S	AMPLE DESC	RIPTION: LE TYPE:	BH1 SS2 Soil	BH1 SS6 Soil	BH5 SS1 Soil	BH5 SS2 Soil	BH5 SS5 Soil	BH4 SS2 Soil	BH4 SS6 Soil			
Parameter	Unit	DATE S G/S	AMPLED: RDL	2024-11-14 6327552	2024-11-14 6327554	2024-11-15 6327559	2024-11-15 6327572	2024-11-15 6327573	2024-11-14 6327574	2024-11-14 6327575			
Bromoform	ug/g	0.26	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			
Styrene	ug/g	2.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
p-Xylene	ug/g		0.05	< 0.05	<0.05	166	217	<0.05	< 0.05	< 0.05			
1,3-Dichlorobenzene	ug/g	6	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05			
I,4-Dichlorobenzene	ug/g	0.097	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
1,2-Dichlorobenzene	ug/g	4.3	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05			
(Ylenes (Total)	ug/g	25	0.05	< 0.05	<0.05	576	716	<0.05	< 0.05	< 0.05			
1,3-Dichloropropene (Cis + Trans)	μg/g	0.083	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
n-Hexane	μg/g	34	0.05	< 0.05	<0.05	117	114	<0.05	<0.05	< 0.05			
Moisture Content	%		0.1	15.3	8.6	15.2	14.0	13.8	13.4	9.3			
Surrogate	Unit	Acceptable	e Limits										
Toluene-d8	% Recovery	50-14	10	89	78	75	104	107	83	84			
1-Bromofluorobenzene	% Recovery	50-14	10	98	91	101	50	56	97	92			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327552-6327575 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Exceedance Summary

AGAT WORK ORDER: 24T221642

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

ATTENTION TO: Bennett Sabourin

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6327555	BH2 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Barium	μg/g	390	622
6327555	BH2 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Lead	μg/g	120	165
6327555	BH2 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Zinc	μg/g	340	2100
6327557	BH3 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Lead	μg/g	120	217
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.22
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	7.46
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - PAHs (Soil)	2-and 1-methyl Naphthalene	μg/g	3.4	4.12
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - PAHs (Soil)	Naphthalene	μg/g	0.75	5.29
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzene	μg/g	0.17	20.2
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Ethylbenzene	μg/g	15	118
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F1 (C6 to C10)	μg/g	65	3230
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F1 (C6 to C10) minus BTEX	μg/g	65	2440
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F2 (C10 to C16)	μg/g	150	701
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Naphthalene	μg/g	0.75	5.29
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Toluene	μg/g	6	76.0
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Benzene	ug/g	0.17	20.2
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Ethylbenzene	ug/g	15	118
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Toluene	ug/g	6	76.0
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Xylenes (Total)	ug/g	25	576
6327559	BH5 SS1	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	n-Hexane	μg/g	34	117
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.04
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	6.62
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - PAHs (Soil)	2-and 1-methyl Naphthalene	μg/g	3.4	4.77
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - PAHs (Soil)	Naphthalene	μg/g	0.75	5.76
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Benzene	μg/g	0.17	25.8
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Ethylbenzene	μg/g	15	139
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F1 (C6 to C10)	μg/g	65	3290
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F1 (C6 to C10) minus BTEX	μg/g	65	2260
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	F2 (C10 to C16)	μg/g	150	384
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Naphthalene	μg/g	0.75	5.76
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)	Toluene	μg/g	6	145
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Benzene	ug/g	0.17	25.8

Exceedance Summary

AGAT WORK ORDER: 24T221642

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

ATTENTION TO: Bennett Sabourin

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Ethylbenzene	ug/g	15	139
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Toluene	ug/g	6	145
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	Xylenes (Total)	ug/g	25	716
6327572	BH5 SS2	ON T3 S RPI MFT	O. Reg. 153(511) - VOCs (with PHC) (Soil)	n-Hexane	μg/g	34	114

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141 SAMPLING SITE:388 Main St. E, Milton AGAT WORK ORDER: 24T221642
ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

SAMI LING SITE.300 Maii C	ot: E, Militori						J/ \ V	LLDD						
			Soi	l Ana	alysis	5								
RPT Date: Nov 21, 2024			DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		eptable mits
	ld ld	"				Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)													
Antimony	6327296	<0.8	<0.8	NA	< 0.8	98%	70%	130%	86%	80%	120%	79%	70%	130%
Arsenic	6327296	7	7	3.2%	< 1	128%	70%	130%	102%	80%	120%	102%	70%	130%
Barium	6327296	118	130	9.1%	< 2.0	121%	70%	130%	105%	80%	120%	107%	70%	130%
Beryllium	6327296	0.9	0.9	NA	< 0.5	118%	70%	130%	117%	80%	120%	122%	70%	130%
Boron	6327296	13	12	NA	< 5	91%	70%	130%	101%	80%	120%	81%	70%	130%
Boron (Hot Water Soluble)	6327552 6327552	0.15	0.17	NA	< 0.10	106%	60%	140%	102%	70%	130%	98%	60%	140%
Cadmium	6327296	<0.5	<0.5	NA	< 0.5	119%	70%	130%	101%	80%	120%	106%	70%	130%
Chromium	6327296	21	22	NA	< 5	106%	70%	130%	94%	80%	120%	NA	70%	130%
Cobalt	6327296	9.5	10.5	10.3%	< 0.8	94%	70%	130%	95%	80%	120%	92%	70%	130%
Copper	6327296	29.3	30.8	5.0%	< 1.0	104%	70%	130%	100%	80%	120%	NA	70%	130%
Lead	6327296	117	140	18.2%	< 1	109%	70%	130%	99%	80%	120%	91%	70%	130%
Molybdenum	6327296	<0.5	0.5	NA	< 0.5	110%	70%	130%	100%	80%	120%	105%	70%	130%
Nickel	6327296	24	25	3.5%	< 1	114%	70%	130%	103%	80%	120%	98%	70%	130%
Selenium	6327296	<0.8	<0.8	NA	< 0.8	107%	70%	130%	103%	80%	120%	104%	70%	130%
Silver	6327296	<0.5	<0.5	NA	< 0.5	127%	70%	130%	105%	80%	120%	105%	70%	130%
Thallium	6327296	<0.5	<0.5	NA	< 0.5	130%	70%	130%	115%	80%	120%	111%	70%	130%
Uranium	6327296	0.55	0.60	NA	< 0.50	94%	70%	130%	89%	80%	120%	98%	70%	130%
Vanadium	6327296	29.3	30.5	4.0%	< 2.0	125%	70%	130%	86%	80%	120%	106%	70%	130%
Zinc	6327296	95	100	5.9%	< 5	117%	70%	130%	97%	80%	120%	NA	70%	130%
Chromium, Hexavalent	6327572 6327572	<0.2	<0.2	NA	< 0.2	93%	70%	130%	89%	80%	120%	70%	70%	130%
Cyanide, WAD	6327574 6327574	<0.040	<0.040	NA	< 0.040	94%	70%	130%	98%	80%	120%	100%	70%	130%
Mercury	6327296	<0.10	<0.10	NA	< 0.10	101%	70%	130%	94%	80%	120%	94%	70%	130%
Electrical Conductivity (2:1)	6327296	0.165	0.189	13.5%	< 0.005	95%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	6327296	0.600	0.578	3.7%	NA									
pH, 2:1 CaCl2 Extraction	6325818	6.43	6.68	3.8%	NA	102%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated.

O. Reg. 153(511) - Metals & Inorganics (Soil)

Electrical Conductivity (2:1)	6327552 6327552	0.222	0.248	11.3%	< 0.005	96%	80%	120%
Sodium Adsorption Ratio (2:1) (Calc.)	6327552 6327552	1.54	1.39	10.2%	NA			
pH, 2:1 CaCl2 Extraction	6327574 6327574	7.06	7.13	1.0%	NA	100%	80%	120%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document. Duplicate NA: results are under 5X the RDL and will not be calculated.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 23

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLING SITE:388 Main St. E, Milton SAMPLED BY:BS

Soil Analysis (Continued)															
RPT Date: Nov 21, 2024	ΓE		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE				
PARAMETER	Sample	Dup #1	up #1 Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Lin	ptable nits	
	Batch	ld					Value	Lower	Upper			Upper	1		Upper

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLING SITE:388 Main St. E, Milton SAMPLED BY:BS

			Trac	ce Or	gani	cs Ar	nalys	is							
RPT Date: Nov 21, 2024				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	Lin	eptable mits
FANAMETER	Dateil	ld	Dup#1	Dup #2	KFD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs a	and VOC)	(Soil)			•	•		•		•				
F1 (C6 to C10)	6327315		<5	<5	NA	< 5	97%	60%	140%	102%	60%	140%	86%	60%	140%
F2 (C10 to C16)	6323223		< 10	< 10	NA	< 10	99%	60%	140%	91%	60%	140%	115%	60%	140%
F3 (C16 to C34)	6323223		< 50	< 50	NA	< 50	89%	60%	140%	107%	60%	140%	125%	60%	140%
F4 (C34 to C50)	6323223		< 50	< 50	NA	< 50	69%	60%	140%	114%	60%	140%	79%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Soil)														
Dichlorodifluoromethane	6327315		< 0.05	< 0.05	NA	< 0.05	61%	50%	140%	109%	50%	140%	80%	50%	140%
Vinyl Chloride	6327315		< 0.02	< 0.02	NA	< 0.02	128%	50%	140%	84%	50%	140%	111%	50%	140%
Bromomethane	6327315		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	121%	50%	140%	84%	50%	140%
Trichlorofluoromethane	6327315		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	102%	50%	140%	78%	50%	140%
Acetone	6327315		<0.50	<0.50	NA	< 0.50	97%	50%	140%	113%	50%	140%	102%	50%	140%
1,1-Dichloroethylene	6327315		<0.05	<0.05	NA	< 0.05	91%	50%	140%	101%	60%	130%	95%	50%	140%
Methylene Chloride	6327315		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	98%	60%	130%	93%	50%	140%
Trans- 1,2-Dichloroethylene	6327315		< 0.05	< 0.05	NA	< 0.05	75%	50%	140%	97%	60%	130%	74%	50%	140%
Methyl tert-butyl Ether	6327315		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	88%	60%	130%	95%	50%	140%
1,1-Dichloroethane	6327315		<0.02	<0.02	NA	< 0.02	96%	50%	140%	104%	60%	130%	106%	50%	140%
Methyl Ethyl Ketone	6327315		<0.50	<0.50	NA	< 0.50	112%	50%	140%	95%	50%	140%	126%	50%	140%
Cis- 1,2-Dichloroethylene	6327315		< 0.02	< 0.02	NA	< 0.02	101%	50%	140%	103%	60%	130%	103%	50%	140%
Chloroform	6327315		< 0.04	< 0.04	NA	< 0.04	95%	50%	140%	111%	60%	130%	109%	50%	140%
1,2-Dichloroethane	6327315		< 0.03	< 0.03	NA	< 0.03	102%	50%	140%	103%	60%	130%	74%	50%	140%
1,1,1-Trichloroethane	6327315		<0.05	<0.05	NA	< 0.05	75%	50%	140%	100%	60%	130%	105%	50%	140%
Carbon Tetrachloride	6327315		<0.05	<0.05	NA	< 0.05	105%	50%	140%	102%	60%	130%	79%	50%	140%
Benzene	6327315		< 0.02	< 0.02	NA	< 0.02	93%	50%	140%	104%	60%	130%	92%	50%	140%
1,2-Dichloropropane	6327315		< 0.03	< 0.03	NA	< 0.03	75%	50%	140%	84%	60%	130%	93%	50%	140%
Trichloroethylene	6327315		< 0.03	< 0.03	NA	< 0.03	85%	50%	140%	84%	60%	130%	89%	50%	140%
Bromodichloromethane	6327315		<0.05	<0.05	NA	< 0.05	102%	50%	140%	103%	60%	130%	92%	50%	140%
Methyl Isobutyl Ketone	6327315		<0.50	<0.50	NA	< 0.50	83%	50%	140%	100%	50%	140%	98%	50%	140%
1,1,2-Trichloroethane	6327315		< 0.04	< 0.04	NA	< 0.04	85%	50%	140%	95%	60%	130%	77%	50%	140%
Toluene	6327315		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	111%	60%	130%	87%	50%	140%
Dibromochloromethane	6327315		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	93%	60%	130%	87%	50%	140%
Ethylene Dibromide	6327315		<0.04	<0.04	NA	< 0.04	67%	50%	140%	86%	60%	130%	102%	50%	140%
Tetrachloroethylene	6327315		<0.05	<0.05	NA	< 0.05	88%	50%	140%	99%	60%	130%	78%	50%	140%
1,1,1,2-Tetrachloroethane	6327315		< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	103%	60%	130%	75%	50%	140%
Chlorobenzene	6327315		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	100%	60%	130%	86%	50%	140%
Ethylbenzene	6327315		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	111%	60%	130%	105%	50%	140%
m & p-Xylene	6327315		<0.05	<0.05	NA	< 0.05	95%		140%	118%		130%	101%		140%
Bromoform	6327315		<0.05	<0.05	NA	< 0.05	69%	50%	140%	65%	60%	130%	67%	50%	140%
Styrene	6327315		< 0.05	< 0.05	NA	< 0.05	79%		140%	95%	60%	130%	88%		140%
1,1,2,2-Tetrachloroethane	6327315		< 0.05	< 0.05	NA	< 0.05	105%		140%	108%		130%	89%	50%	140%
o-Xylene	6327315		< 0.05	< 0.05	NA	< 0.05	98%		140%	94%		130%	104%		140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 17 of 23

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

SAMPLING SITE:388 Main St. E, Milton

AGAT WORK ORDER: 24T221642
ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

DAMI LING SITE.300 Main C		_					<u> </u>								
	7	Trace	Org	anics	Ana	alysis	(Cor	ntin	uec	l)					
RPT Date: Nov 21, 2024				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 11	eptable mits	Recovery		eptable mits
							Value	Lower	Upper		Lower	Upper		Lower	Uppe
1,3-Dichlorobenzene	6327315		<0.05	<0.05	NA	< 0.05	100%	50%	140%	103%	60%	130%	99%	50%	140%
1,4-Dichlorobenzene	6327315		<0.05	< 0.05	NA	< 0.05	103%	50%	140%	102%	60%	130%	97%	50%	140%
1,2-Dichlorobenzene	6327315		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	97%	60%	130%	101%	50%	140%
n-Hexane	6327315		<0.05	<0.05	NA	< 0.05	76%	50%	140%	104%	60%	130%	87%	50%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6327350		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	78%	50%	140%	90%	50%	140%
Acenaphthylene	6327350		<0.05	<0.05	NA	< 0.05	83%	50%	140%	95%	50%	140%	78%	50%	140%
Acenaphthene	6327350		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	80%	50%	140%	93%	50%	140%
Fluorene	6327350		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	78%	50%	140%	88%	50%	140%
Phenanthrene	6327350		<0.05	<0.05	NA	< 0.05	86%	50%	140%	75%	50%	140%	83%	50%	140%
Anthracene	6327350		<0.05	<0.05	NA	< 0.05	72%	50%	140%	73%	50%	140%	83%	50%	140%
Fluoranthene	6327350		<0.05	< 0.05	NA	< 0.05	90%	50%	140%	78%	50%	140%	85%	50%	140%
Pyrene	6327350		<0.05	< 0.05	NA	< 0.05	90%	50%	140%	78%	50%	140%	88%	50%	140%
Benzo(a)anthracene	6327350		<0.05	< 0.05	NA	< 0.05	82%	50%	140%	85%	50%	140%	93%	50%	140%
Chrysene	6327350		<0.05	<0.05	NA	< 0.05	100%	50%	140%	88%	50%	140%	110%	50%	140%
Benzo(b)fluoranthene	6327350		<0.05	<0.05	NA	< 0.05	81%	50%	140%	88%	50%	140%	85%	50%	140%
Benzo(k)fluoranthene	6327350		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	85%	50%	140%	105%	50%	140%
Benzo(a)pyrene	6327350		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	78%	50%	140%	85%	50%	140%
Indeno(1,2,3-cd)pyrene	6327350		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	73%	50%	140%	90%	50%	140%
Dibenz(a,h)anthracene	6327350		<0.05	<0.05	NA	< 0.05	115%	50%	140%	88%	50%	140%	103%	50%	140%
Benzo(g,h,i)perylene	6327350		<0.05	<0.05	NA	< 0.05	102%	50%	140%	93%	50%	140%	88%	50%	140%
O. Reg. 153(511) - PCBs (Soil)															
Polychlorinated Biphenyls	6227350		< 0.1	< 0.1	NA	< 0.1	98%	50%	140%	105%	50%	140%	106%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	(Soil)														
Benzene	6325831		<0.02	< 0.02	NA	< 0.02	95%	60%	140%	95%	60%	140%	95%	60%	140%
Toluene	6325831		< 0.05	< 0.05	NA	< 0.05	115%	60%	140%	81%	60%	140%	125%	60%	140%
Ethylbenzene	6325831		< 0.05	< 0.05	NA	< 0.05	114%	60%	140%	85%	60%	140%	121%	60%	140%
m & p-Xylene	6325831		< 0.05	< 0.05	NA	< 0.05	107%	60%	140%	111%	60%	140%	109%	60%	140%
o-Xylene	6325831		<0.05	<0.05	NA	< 0.05	118%	60%	140%	81%	60%	140%	103%	60%	140%
F1 (C6 to C10)	6325831		<5	<5	NA	< 5	82%	60%	140%	91%	60%	140%	80%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

R. Chakraberty

AGAT QUALITY ASSURANCE REPORT (V1)

Page 18 of 23

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 24T221642 PROJECT: 220141

SAMPLING SITE:388 Main St. E, Milton

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100

Method Summary

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 24T221642 PROJECT: 220141 **ATTENTION TO: Bennett Sabourin**

SAMPLING SITE:388 Main St. E, Milton

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID

Method Summary

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLING SITE:388 Main St. E, Milton

SAMPLING SHE:300 Main St. E, Millon		SAMPLED DT:DS	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T221642

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLING SITE:388 Main St. E, Milton

SAMPLING SITE:388 Main St. E, Militor	SAMPLED BY:BS							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	and EPA (P&T)GC/MS					
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
m & p-Xylene	VOL-91-5002	modified from EDA 5025A and EDA						
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS					
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS					
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS					

Have feedback? Scan here for a quick survey!

Ph:

5835 Coopers Avenue	Laboratory Use Only
Mississauga, Ontario L4Z 1Y2 905,712,5100 Fax: 905,712,5122 webearth,agatlabs.com	Work Order #: 24722164
webeartii.agadabs.com	Cooler Quantity:
	Arrival Temperatures: > 8 6 0 6

			Depot Temperatures:
Report Information: SOLUMAT Regular (Please che	latory Requirements:		Custody Seal Intact: Yes No N/A
D-Anth C. hounis	ilation 153/04 Regulation 406 [Sewer-Use	Notes:
MAI Frage Of Haw they	Indicate One Table	Sanitary Storm	Turnaround Time (TAT) Required: Regular TAT
Phone: Fax: Age	s/Park	Prov. Water Quality Objectives (PWQO)	Rush TAT (Rush Surcharges Apply)
1. Email: Pmarkesic O Soilmet.cq	arse	Other Indicate One	3 Business 2 Business Days Next Business Days Days Day OR Date Required (Rush Surcharges May Apply):
Troject information		eport Guldeline on rtificate of Analysis	Please provide prior notification for rush TAT
Site Location: 3 88 Mail 1. E, Mitol	Yes □ No □	l Yes □ No	*TAT is exclusive of weekends and statutory holidays
Sampled By:			For 'Same Day' analysis, please contact your AGAT CSR
AGAT Quote #: 16593243833 PO: Legal	Sample	O. Reg 153	0. Reg 406 0. Reg 558
Please note: If quotation number is not provided, client will be billed full price for analysis.	Sample D		Package Leach OCS □OC ITCLP: IP□ PCBs Ide
Company: Contact: GW G 0 0	le Matrix Legend round Water SD Sediment il SW Surface Water aint R Rock/Shale	s & Inorganics S - CrVI, Cl Hg, Cl HWSB F1-F4 PHCs Aroclors Cl	on 406 Characterization als, BTEX, F1-F4 on 406 SPLP Rainwater I D Metals □ VOCs □ Sw Disposal Characterization MSI □ VOCs □ ABNS □ B(MY: □ Moisture □ Sulpi WY: □ Moisture □ Sulpi WY Hazardous or High Conce
Sample Identification Date Time # of Sample Sampled Containers Matrix	Comments/ Special Instructions	Metals & Inor Metals - Crv BTEX, F1.F4 F VOC PAHS PCBS: Aroclors	PH. Metals, Ph. Metals, Pt. SAR Regulation - Regulation - Candrill District: DMSI Corrosivity;
1. BHI 552 NOV 14 PM 5 5		1 1 1 1 1	
2. BHI 556 NW 14 AM 5 5		1 111	
3. BH2 SSZ NW 13 AM 3 S	AND THE PARTY OF T	1 1	
4. BH2 SS3 Nov 13 AM 3 S			
5. BH3 SSI WW 12 AM 3 S		1 1	
6. BH3 552 Novi2 AM 3 5			
7. BHS SST POVIS AM 4 S		1 11	
8. BUS SSZ IVOVIS AM 4 CS		1 1 1 1	
9. BHS SSS Nov 15 AM 3 S		1 11	
10. BH4 SS2 (Vov 14 AM 5 5		1 1 1 1 1	
11. BHY 550 NW 14 AM 5		7 7 7 7 7 7	
	amples Received By Print Name and Sign):	Date	1 C TIME
Samples Relinquished By (Print Name and Sign): Date Time Si	amnics Received by (Print Name and Sign):	Date	Time Page of
Samples Relinquished By (Print Name and Sign). Date: Time Sign	amples Received By (Print Name and Sign):	Date	N°: T - 164593

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT 401 GRAYS ROAD HAMILTON, ON L8E 2Z3 (905) 318-7440

ATTENTION TO: Bennett Sabourin

PROJECT: 220141

AGAT WORK ORDER: 24T221643

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

TRACE ORGANICS REVIEWED BY: Radhika Chakraberty, Trace Organics Lab Manager

DATE REPORTED: Nov 21, 2024

PAGES (INCLUDING COVER): 19 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes		
1		_

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 19

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE: Milton: 388 Main St. E & 17 Pearl St.

Certificate of Analysis

AGAT WORK ORDER: 24T221643

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

O. Reg. 153(511) - Metals & Inorganics (Soil)

				<u> </u>	,		, ,	
DATE RECEIVED: 2024-11-15								DATE REPORTED: 2024-11-21
Danamatan		DATES	PLE TYPE: SAMPLED:	DUP 2 Soil 2024-11-13	BH13 SS1 Soil 2024-11-15 6327341	BH13 SS2 Soil 2024-11-15 6327349	DUP 14 Soil 2024-11-15	
Parameter	Unit	G/S 7.5	RDL 0.8	6327340 <0.8	<0.8	<0.8	6327350 <0.8	
Antimony Arsenic	μg/g	7.5 18		<0.6 7	<0.6 8	<0.6 5	<0.6	
	μg/g	390	1 2.0	183	97.4	139	104	
Barium Beryllium	μg/g	5 5	0.5	0.8	0.8	1.1	1.0	
Boron	μg/g	120	5	16	8	15	1.0	
	μg/g	1.5	0.10	0.38	0.50	0.30	0.26	
Boron (Hot Water Soluble) Cadmium	μg/g	1.5	0.10	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	160	5	<0.5 21	<0.5 29	33	28	
Cobalt	μg/g	22	0.8	12.0	13.8	13.0	12.9	
	μg/g	180	1.0	40.6	20.2	27.4	28.4	
Copper	μg/g	120	1.0	58	32	12	8	
Lead	μg/g							
Molybdenum Nickel	μg/g	6.9 130	0.5 1	0.8 25	0.7 24	<0.5 33	<0.5 29	
Selenium	μg/g		0.8					
	µg/g	2.4		<0.8	<0.8	<0.8	<0.8	
Silver	μg/g	25	0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	23	0.50	0.70	0.58	0.74	0.73	
Vanadium	μg/g	86	2.0	28.3	41.8 88	44.6 70	39.5 64	
Zinc	µg/g	340	5	120				
Chromium, Hexavalent	µg/g	10	0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, WAD	μg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	μg/g	1.8	0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.598	0.344	0.642	0.394	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.818	1.80	2.08	2.16	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.24	6.99	7.14	7.20	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.24	6.99	7.14	7.20	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 24T221643

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE: Milton: 388 Main St. E & 17 Pearl St.

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2024-11-15 DATE REPORTED: 2024-11-21

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327340-6327350 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED ON THE PROPERTY OF T

SAMPLING SITE: Milton: 388 Main St. E & 17 Pearl St.

Certificate of Analysis

AGAT WORK ORDER: 24T221643

PROJECT: 220141

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

O. Reg. 153(511) - PAHs (Soil)

DATE REPORTED: 2024-11-21 DATE RECEIVED: 2024-11-15 DUP 14 SAMPLE DESCRIPTION: **BH13 SS1 BH13 SS2 SAMPLE TYPE:** Soil Soil Soil DATE SAMPLED: 2024-11-15 2024-11-15 2024-11-15 RDL 6327341 6327349 6327350 **Parameter** Unit G/S Naphthalene 0.75 0.05 < 0.05 < 0.05 < 0.05 μg/g Acenaphthylene 0.17 0.05 < 0.05 < 0.05 < 0.05 μg/g < 0.05 Acenaphthene μg/g 58 0.05 < 0.05 < 0.05 69 < 0.05 Fluorene 0.05 < 0.05 < 0.05 μg/g Phenanthrene 7.8 0.05 < 0.05 < 0.05 < 0.05 μg/g Anthracene μg/g 0.74 0.05 < 0.05 < 0.05 < 0.05 Fluoranthene μg/g 0.69 0.05 < 0.05 < 0.05 < 0.05 Pyrene μg/g 78 0.05 < 0.05 < 0.05 < 0.05 0.63 0.05 < 0.05 < 0.05 Benzo(a)anthracene μg/g < 0.05 Chrysene 7.8 0.05 < 0.05 < 0.05 < 0.05 μg/g Benzo(b)fluoranthene μg/g 0.78 0.05 < 0.05 < 0.05 < 0.05 0.78 < 0.05 Benzo(k)fluoranthene μg/g 0.05 < 0.05 < 0.05 Benzo(a)pyrene 0.05 < 0.05 < 0.05 μg/g 0.3 < 0.05 0.48 < 0.05 Indeno(1,2,3-cd)pyrene μg/g 0.05 < 0.05 < 0.05 Dibenz(a,h)anthracene 0.1 0.05 < 0.05 < 0.05 < 0.05 μg/g Benzo(g,h,i)perylene µg/g 7.8 0.05 < 0.05 < 0.05 <0.05 2-and 1-methyl Naphthalene μg/g 3.4 0.05 < 0.05 < 0.05 < 0.05 Moisture Content 0.1 13.7 18.1 % 16.8 Surrogate Unit **Acceptable Limits** Naphthalene-d8 % 50-140 90 80 105 % Acridine-d9 50-140 100 100 70 Terphenyl-d14 % 50-140 85 100 90

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327341-6327350 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 24T221643

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin

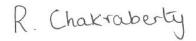
SAMPLED BY:BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE: Milton: 388 Main St. E & 17 Pearl St.

O. Reg. 153(511) - PCBs (Soil)										
DATE RECEIVED: 2024-11-15							DATE REPORTED: 2024-11-21			
		SAMPLE DES	CRIPTION:	BH13 SS1	BH13 SS2	DUP 14				
		SAM	PLE TYPE:	Soil	Soil	Soil				
		DATE	SAMPLED:	2024-11-15	2024-11-15	2024-11-15				
Parameter	Unit	G/S	RDL	6327341	6327349	6327350				
Polychlorinated Biphenyls	μg/g	0.35	0.1	<0.1	<0.1	<0.1				
Moisture Content	%		0.1	16.8	13.7	18.1				
Surrogate	Unit	Acceptab	le Limits							
Decachlorobiphenyl	%	50-	140	72	84	84				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.


6327341-6327350 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

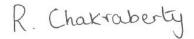
SAMPLING SITE: Milton: 388 Main St. E & 17 Pearl St.

Certificate of Analysis

AGAT WORK ORDER: 24T221643

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com


ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

О.	Reg. 153	(511) - PHC	s F1 - F4 (S	Soil)

DATE RECEIVED: 2024-11-15					DATE REPORTED: 2024-11-2
	S	AMPLE DESC	RIPTION:	DUP 2	
		SAMP	LE TYPE:	Soil	
		DATE S	AMPLED:	2024-11-13	
Parameter	Unit	G/S	RDL	6327340	
Benzene	μg/g	0.17	0.02	<0.02	
Toluene	μg/g	6	0.05	< 0.05	
Ethylbenzene	μg/g	15	0.05	< 0.05	
m & p-Xylene	μg/g		0.05	< 0.05	
o-Xylene	μg/g		0.05	< 0.05	
Xylenes (Total)	μg/g	25	0.05	< 0.05	
F1 (C6 to C10)	μg/g	65	5	<5	
F1 (C6 to C10) minus BTEX	μg/g	65	5	<5	
F2 (C10 to C16)	μg/g	150	10	<10	
F3 (C16 to C34)	μg/g	1300	50	<50	
F4 (C34 to C50)	μg/g	5600	50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	5600	50	NA	
Moisture Content	%		0.1	13.2	
Surrogate	Unit	Acceptabl	e Limits		
Toluene-d8	% Recovery	60-1	40	90	
Terphenyl	%	60-1	40	77	

Certified By:

SAMPLING SITE: Milton: 388 Main St. E & 17 Pearl St.

Certificate of Analysis

AGAT WORK ORDER: 24T221643

PROJECT: 220141

. . .

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

O. Reg. 153(511) - PHCs F1 - F4 (Soil)

DATE RECEIVED: 2024-11-15 DATE REPORTED: 2024-11-21

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327340 Results are based on sample dry weight.

The C6-C10 fraction is calculated using Toluene response factor.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Quality Control Data is available upon request.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE: Milton: 388 Main St. E & 17 Pearl St.

Certificate of Analysis

AGAT WORK ORDER: 24T221643

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2024-11-15 DATE REPORTED: 2024-11-21

							27112 1121 2111 211 21 21 21 21 21
		SAMPLE DES	CRIPTION:	BH13 SS1	BH13 SS2	DUP 14	
		SAM	PLE TYPE:	Soil	Soil	Soil	
		DATES	SAMPLED:	2024-11-15	2024-11-15	2024-11-15	
Parameter	Unit	G/S	RDL	6327341	6327349	6327350	
F1 (C6 to C10)	μg/g	65	5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	65	5	<5	<5	<5	
F2 (C10 to C16)	μg/g	150	10	<10	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	<10	
F3 (C16 to C34)	μg/g	1300	50	<50	<50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50	<50	
F4 (C34 to C50)	μg/g	5600	50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	5600	50	NA	NA	NA	
Moisture Content	%		0.1	16.8	13.7	18.1	
Surrogate	Unit	Acceptab	le Limits				
Toluene-d8	%	50-1	140	82	89	82	
Terphenyl	%	60-1	140	98	96	95	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327341-6327350 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

R. Chakraberty

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

Certificate of Analysis

AGAT WORK ORDER: 24T221643

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS

SAMPLING SITE:Milton: 388 Main St. E & 17 Pearl St.

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-11-15							DATE REPORTED: 2024-11-21
		SAMPLE DESCR	RIPTION:	BH13 SS1	BH13 SS2	DUP 14	
		SAMPL	E TYPE:	Soil	Soil	Soil	
		DATE SA	MPLED:	2024-11-15	2024-11-15	2024-11-15	
Parameter	Unit	G/S	RDL	6327341	6327349	6327350	
Dichlorodifluoromethane	μg/g	25	0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.022	0.02	< 0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	
Trichlorofluoromethane	ug/g	5.8	0.05	< 0.05	< 0.05	< 0.05	
Acetone	ug/g	28	0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	
Methylene Chloride	ug/g	0.96	0.05	<0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.75	0.05	< 0.05	< 0.05	< 0.05	
Methyl tert-butyl Ether	ug/g	1.4	0.05	< 0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g	11	0.02	< 0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	44	0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	30	0.02	< 0.02	<0.02	<0.02	
Chloroform	ug/g	0.18	0.04	<0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	3.4	0.05	< 0.05	< 0.05	< 0.05	
Carbon Tetrachloride	ug/g	0.12	0.05	< 0.05	<0.05	< 0.05	
Benzene	ug/g	0.17	0.02	< 0.02	< 0.02	<0.02	
1,2-Dichloropropane	ug/g	0.085	0.03	< 0.03	< 0.03	< 0.03	
Frichloroethylene	ug/g	0.52	0.03	< 0.03	<0.03	< 0.03	
Bromodichloromethane	ug/g	13	0.05	< 0.05	<0.05	< 0.05	
Methyl Isobutyl Ketone	ug/g	4.3	0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	< 0.04	<0.04	< 0.04	
Γoluene	ug/g	6	0.05	< 0.05	<0.05	<0.05	
Dibromochloromethane	ug/g	9.4	0.05	<0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	< 0.04	<0.04	<0.04	
Fetrachloroethylene	ug/g	2.3	0.05	< 0.05	< 0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.7	0.05	<0.05	<0.05	<0.05	
Ethylbenzene	ug/g	15	0.05	<0.05	<0.05	<0.05	
m & p-Xylene	ug/g		0.05	<0.05	<0.05	<0.05	

Certified By:

SAMPLING SITE: Milton: 388 Main St. E & 17 Pearl St.

Certificate of Analysis

AGAT WORK ORDER: 24T221643

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS

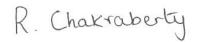
O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2024-11-15							DATE REPORTED: 2024-11-21
	S	AMPLE DESC	RIPTION:	BH13 SS1	BH13 SS2	DUP 14	
		SAMF	LE TYPE:	Soil	Soil	Soil	
		DATE S	AMPLED:	2024-11-15	2024-11-15	2024-11-15	
Parameter	Unit	G/S	RDL	6327341	6327349	6327350	
Bromoform	ug/g	0.26	0.05	< 0.05	<0.05	< 0.05	
Styrene	ug/g	2.2	0.05	< 0.05	< 0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	<0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	6	0.05	< 0.05	<0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.097	0.05	< 0.05	<0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	4.3	0.05	< 0.05	< 0.05	< 0.05	
(Ylenes (Total)	ug/g	25	0.05	< 0.05	< 0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.083	0.05	< 0.05	<0.05	< 0.05	
n-Hexane	μg/g	34	0.05	< 0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	16.8	13.7	18.1	
Surrogate	Unit	Acceptabl	e Limits				
Toluene-d8	% Recovery	50-1	40	82	89	82	
4-Bromofluorobenzene	% Recovery	50-1	40	100	104	99	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6327341-6327350 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.


Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

AGAT WORK ORDER: 24T221643

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141 ATTENTION TO: Bennett Sabourin

SAMPLING SITE:Milton: 388 Main St. E & 17 Pearl St. SAMPLED BY:BS

OAMI EINO OITE:MINOII: 300	J Walli St. L	4 17 1 6	arrot.				`	7/11/11		1.50					
				Soi	l Ana	alysis	6								
RPT Date: Nov 21, 2024			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lir	ptable nits	Recovery	Lir	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	rganics (Soil)										•				•
Antimony	6327698		<0.8	<0.8	NA	< 0.8	92%	70%	130%	85%	80%	120%	79%	70%	130%
Arsenic	6327698		2	2	NA	< 1	118%	70%	130%	107%	80%	120%	114%	70%	130%
Barium	6327698		22.7	24.2	6.4%	< 2.0	104%	70%	130%	100%	80%	120%	115%	70%	130%
Beryllium	6327698		< 0.5	<0.5	NA	< 0.5	109%	70%	130%	111%	80%	120%	139%	70%	130%
Boron	6327698		<5	<5	NA	< 5	87%	70%	130%	95%	80%	120%	122%	70%	130%
Boron (Hot Water Soluble)	6327344		0.23	0.23	NA	< 0.10	105%	60%	140%	102%	70%	130%	102%	60%	140%
Cadmium	6327698		< 0.5	<0.5	NA	< 0.5	96%	70%	130%	97%	80%	120%	107%	70%	130%
Chromium	6327698		8	8	NA	< 5	113%	70%	130%	99%	80%	120%	111%	70%	130%
Cobalt	6327698		3.3	3.5	NA	< 0.8	115%	70%	130%	111%	80%	120%	115%	70%	130%
Copper	6327698		8.5	9.0	5.7%	< 1.0	103%	70%	130%	100%	80%	120%	105%	70%	130%
Lead	6327698		4	4	NA	< 1	113%	70%	130%	110%	80%	120%	98%	70%	130%
Molybdenum	6327698		<0.5	0.6	NA	< 0.5	111%	70%	130%	105%	80%	120%	112%	70%	130%
Nickel	6327698		8	8	0.0%	< 1	119%	70%	130%	113%	80%	120%	115%	70%	130%
Selenium	6327698		<0.8	<0.8	NA	< 0.8	129%	70%	130%	99%	80%	120%	119%	70%	130%
Silver	6327698		<0.5	<0.5	NA	< 0.5	109%	70%	130%	118%	80%	120%	103%	70%	130%
Thallium	6327698		<0.5	<0.5	NA	< 0.5	96%	70%	130%	102%	80%	120%	101%	70%	130%
Uranium	6327698		< 0.50	< 0.50	NA	< 0.50	111%	70%	130%	110%	80%	120%	104%	70%	130%
Vanadium	6327698		16.2	16.6	2.4%	< 2.0	118%	70%	130%	109%	80%	120%	122%	70%	130%
Zinc	6327698		17	19	NA	< 5	118%	70%	130%	111%	80%	120%	119%	70%	130%
Chromium, Hexavalent	6321798		<0.2	<0.2	NA	< 0.2	93%	70%	130%	89%	80%	120%	72%	70%	130%
Cyanide, WAD	6325818		<0.040	<0.040	NA	< 0.040	94%	70%	130%	98%	80%	120%	106%	70%	130%
Mercury	6327698		<0.10	<0.10	NA	< 0.10	106%	70%	130%	98%	80%	120%	101%	70%	130%
Electrical Conductivity (2:1)	6327344		0.629	0.597	5.2%	< 0.005	99%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	6327698		1.80	1.72	4.5%	NA									
pH, 2:1 CaCl2 Extraction	6327574		7.06	7.13	1.0%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Certified By:

Page 11 of 19

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T221643

PROJECT: 220141 ATTENTION TO: Bennett Sabourin

SAMPLING SITE:Milton: 388 Main St. E & 17 Pearl St.

SAMPLED BY:BS

			Trac	ce Or	gani	cs Ar	nalys	is							
RPT Date: Nov 21, 2024				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
		Sample				Method Blank	Measured		ptable nits	_	Liv	ptable nits	_		ptable nits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F	4 (Soil)			1							1				
Benzene	6324226		< 0.02	< 0.02	NA	< 0.02	92%	60%	140%	107%	60%	140%	113%	60%	140%
Toluene	6324226		< 0.05	< 0.05	NA	< 0.05	95%	60%	140%	92%	60%	140%	115%	60%	140%
Ethylbenzene	6324226		< 0.05	< 0.05	NA	< 0.05	80%	60%	140%	73%	60%	140%	74%	60%	140%
m & p-Xylene	6324226		< 0.05	< 0.05	NA	< 0.05	109%	60%	140%	112%	60%	140%	104%	60%	140%
o-Xylene	6324226		<0.05	<0.05	NA	< 0.05	88%	60%	140%	93%	60%	140%	102%	60%	140%
F1 (C6 to C10)	6324226		<5	<5	NA	< 5	95%	60%	140%	92%	60%	140%	91%	60%	140%
F2 (C10 to C16)	6323223		< 10	< 10	NA	< 10	99%	60%	140%	91%	60%	140%	115%	60%	140%
F3 (C16 to C34)	6323223		< 50	< 50	NA	< 50	89%	60%	140%	107%	60%	140%	125%	60%	140%
F4 (C34 to C50)	6323223		< 50	< 50	NA	< 50	69%	60%	140%	114%	60%	140%	79%	60%	140%
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs a	nd VOC)	(Soil)												
F1 (C6 to C10)	6327315	,	<5	<5	NA	< 5	97%	60%	140%	102%	60%	140%	86%	60%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Soil)														
Dichlorodifluoromethane	6327315		<0.05	< 0.05	NA	< 0.05	61%	50%	140%	109%	50%	140%	80%	50%	140%
Vinyl Chloride	6327315		<0.02	<0.02	NA	< 0.02	128%	50%	140%	84%	50%	140%	111%	50%	140%
Bromomethane	6327315		<0.05	< 0.05	NA	< 0.05	110%	50%	140%	121%	50%	140%	84%	50%	140%
Trichlorofluoromethane	6327315		< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	102%	50%	140%	78%	50%	140%
Acetone	6327315		<0.50	<0.50	NA	< 0.50	97%		140%	113%	50%	140%	102%	50%	140%
1,1-Dichloroethylene	6327315		<0.05	<0.05	NA	< 0.05	91%	50%	140%	101%	60%	130%	95%	50%	140%
Methylene Chloride	6327315		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	98%	60%	130%	93%	50%	140%
Trans- 1,2-Dichloroethylene	6327315		< 0.05	< 0.05	NA	< 0.05	75%	50%	140%	97%	60%	130%	74%	50%	140%
Methyl tert-butyl Ether	6327315		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	88%	60%	130%	95%	50%	140%
1,1-Dichloroethane	6327315		<0.02	<0.02	NA	< 0.02	96%	50%	140%	104%	60%	130%	106%	50%	140%
Methyl Ethyl Ketone	6327315		<0.50	<0.50	NA	< 0.50	112%	50%	140%	95%	50%	140%	126%	50%	140%
Cis- 1,2-Dichloroethylene	6327315		< 0.02	< 0.02	NA	< 0.02	101%	50%	140%	103%	60%	130%	103%	50%	140%
Chloroform	6327315		< 0.04	< 0.04	NA	< 0.04	95%	50%	140%	111%	60%	130%	109%	50%	140%
1,2-Dichloroethane	6327315		< 0.03	< 0.03	NA	< 0.03	102%	50%	140%	103%	60%	130%	74%	50%	140%
1,1,1-Trichloroethane	6327315		<0.05	<0.05	NA	< 0.05	75%	50%	140%	100%	60%	130%	105%	50%	140%
Carbon Tetrachloride	6327315		<0.05	<0.05	NA	< 0.05	105%	50%	140%	102%	60%	130%	79%	50%	140%
Benzene	6327315		< 0.02	< 0.02	NA	< 0.02	93%	50%	140%	104%	60%	130%	92%	50%	140%
1,2-Dichloropropane	6327315		< 0.03	< 0.03	NA	< 0.03	75%	50%	140%	84%	60%	130%	93%	50%	140%
Trichloroethylene	6327315		< 0.03	< 0.03	NA	< 0.03	85%	50%	140%	84%	60%	130%	89%	50%	140%
Bromodichloromethane	6327315		<0.05	<0.05	NA	< 0.05	102%	50%	140%	103%	60%	130%	92%	50%	140%
Methyl Isobutyl Ketone	6327315		<0.50	<0.50	NA	< 0.50	83%	50%	140%	100%	50%	140%	98%	50%	140%
1,1,2-Trichloroethane	6327315		<0.04	< 0.04	NA	< 0.04	85%	50%	140%	95%	60%	130%	77%	50%	140%
Toluene	6327315		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	111%	60%	130%	87%	50%	140%
Dibromochloromethane	6327315		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	93%	60%	130%	87%	50%	140%
Ethylene Dibromide	6327315		<0.04	<0.04	NA	< 0.04	67%	50%	140%	86%	60%	130%	102%	50%	140%
Tetrachloroethylene	6327315		<0.05	<0.05	NA	< 0.05	88%	50%	140%	99%	60%	130%	78%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T221643

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

SAMPLING SITE:Milton: 388 Main St. E & 17 Pearl St. SAMPLED BY:BS

	T	race	Orga	anics	Ana	alysis	(Coi	ntin	ued	l)					
RPT Date: Nov 21, 2024			С	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKI		KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lie	ptable nits	Recovery		ptable nits
		iu	-				value	Lower	Upper		Lower	Upper		Lower	Upp
1,1,1,2-Tetrachloroethane	6327315		<0.04	<0.04	NA	< 0.04	88%	50%	140%	103%	60%	130%	75%	50%	140
Chlorobenzene	6327315		< 0.05	< 0.05	NA	< 0.05	97%	50%	140%	100%	60%	130%	86%	50%	140
Ethylbenzene	6327315		< 0.05	< 0.05	NA	< 0.05	88%	50%	140%	111%	60%	130%	105%	50%	140
m & p-Xylene	6327315		<0.05	<0.05	NA	< 0.05	95%	50%	140%	118%	60%	130%	101%	50%	140
Bromoform	6327315		<0.05	<0.05	NA	< 0.05	69%	50%	140%	65%	60%	130%	67%	50%	140
Styrene	6327315		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	95%	60%	130%	88%	50%	140
1,1,2,2-Tetrachloroethane	6327315		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	108%	60%	130%	89%	50%	140
o-Xylene	6327315		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	94%	60%	130%	104%	50%	140
1,3-Dichlorobenzene	6327315		<0.05	<0.05	NA	< 0.05	100%	50%	140%	103%	60%	130%	99%	50%	140
1,4-Dichlorobenzene	6327315		<0.05	<0.05	NA	< 0.05	103%	50%	140%	102%	60%	130%	97%	50%	140
1,2-Dichlorobenzene	6327315		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	97%	60%	130%	101%	50%	140
n-Hexane	6327315		<0.05	<0.05	NA	< 0.05	76%	50%	140%	104%	60%	130%	87%	50%	140
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	78%	50%	140%	90%	50%	140
Acenaphthylene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	95%	50%	140%	78%	50%	140
Acenaphthene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	80%	50%	140%	93%	50%	140
Fluorene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	78%	50%	140%	88%	50%	140
Phenanthrene	6327350 6	327350	<0.05	<0.05	NA	< 0.05	86%	50%	140%	75%	50%	140%	83%	50%	140
Anthracene	6327350 6	327350	<0.05	<0.05	NA	< 0.05	72%	50%	140%	73%	50%	140%	83%	50%	140
Fluoranthene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	78%	50%	140%	85%	50%	140
Pyrene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	78%	50%	140%	88%	50%	140
Benzo(a)anthracene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	82%	50%	140%	85%	50%	140%	93%	50%	140
Chrysene	6327350 6	327350	<0.05	<0.05	NA	< 0.05	100%	50%	140%	88%	50%	140%	110%	50%	140
Benzo(b)fluoranthene	6327350 6	327350	<0.05	<0.05	NA	< 0.05	81%	50%	140%	88%	50%	140%	85%	50%	140
Benzo(k)fluoranthene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	85%	50%	140%	105%	50%	140
Benzo(a)pyrene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	78%	50%	140%	85%	50%	140
ndeno(1,2,3-cd)pyrene	6327350 6	327350	< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	73%	50%	140%	90%	50%	140
Dibenz(a,h)anthracene	6327350 6	327350	<0.05	<0.05	NA	< 0.05	115%	50%	140%	88%	50%	140%	103%	50%	140
Benzo(g,h,i)perylene	6327350 6	327350	<0.05	<0.05	NA	< 0.05	102%	50%	140%	93%	50%	140%	88%	50%	140
O. Reg. 153(511) - PCBs (Soil)															
Polychlorinated Biphenyls	6227350 6	227350	< 0.1	< 0.1	NA	< 0.1	98%	50%	140%	105%	50%	140%	106%	50%	140

Certified By:

R. Chakraberty

AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 19

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T221643

PROJECT: 220141

ATTENTION TO: Bennett Sabourin

RPT Date: Nov 21, 2024		REFERENC	E MATERI	IAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER		Measured	Accepta Limit		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
	Sample Id	Value	Lower U	Jpper			Upper	,		Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Beryllium

109% 70% 130% 111% 80% 120% 139% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

AGAT WORK ORDER: 24T221643

ATTENTION TO: Bennett Sabourin

SAMPLING SITE: Milton: 388 Main St. E &	x 17 1 can St.	SAMPLED BY:BS	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

AGAT WORK ORDER: 24T221643

ATTENTION TO: Bennett Sabourin

DADAMETED	17 Pearl St.	SAMPLED BY:BS	
PARAMETER Trans Organism Association	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	ODC 04 5400	modified from EPA 3570 and EPA	CC/MC
Naphthalene	ORG-91-5106	8270E modified from EPA 3570 and EPA	GC/MS
Acenaphthylene	ORG-91-5106	8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
Benzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Toluene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Ethylbenzene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
m & p-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
o-Xylene	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
Xylenes (Total)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

AGAT WORK ORDER: 24T221643

ATTENTION TO: Bennett Sabourin

SAMPLING SHE:Milton: 388 Main St. E	: & 17 Pearl St.	SAMPLED BY:BS	·
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

AGAT WORK ORDER: 24T221643

ATTENTION TO: Bennett Sabourin

SAMPLING SITE: Milton: 388 Main St	t. E & 17 Pearl St.	SAMPLED BY:BS	5
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

Have feedback? Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

ers Avenue	Laboratory Use Only	
io L4Z 1Y2	Work Order #: 247221643	
	Work Order #:	,

Work Order #:	- 11	2-1-	
Cooler Quantity:			-
Arrival Temperatur	res: 6-3	16.51	4-0

Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

Report Information Company:	ı: Şot	LMAT	160-5		Reg (Please	gulatory Requirements:							С		y Seal	atures: Intact:	122	Yes	I	□No	1	ÍN/A
Phone: Reports to be sent to: 1. Email: 2. Email:	Bennet Wol Gra bsabou pmark	Fax: Ai My So esir G So	(wat.ca		Ta	egulation 153/04 Discription Table Table Indicate of Indicate One Indicate of Ind/Com Res/Park Agriculture Agriculture Coarse CCME	ine [Prov Obje	Region . Wate	□ s r Qual (PWQ	ity		Re	gula sh T	AT (Rus 3 Busin Days	h Surchar	ges App	5 to 7	7 Busir siness	ness Day	Next Bu Day	ısiness
Project Information Project: Site Location: Sampled By:	22014 but 388 Main		& 17 Pcs	url st	0	is submission for a Record of Site Condition (RSC)? Yes No	Cer	eport tifica Yes	Gulde te of	Ana.	lysis			For 's	*TAT is Same I	exclusiv Day' ana	e of v	weeken	nds and	on for ru	ry holida _.	
ricarii Quoto II.	Sq 3243833 ase note: If quotation number is no	PO: t provided, client will t	oe billed full price for	analysis	Leg	al Sample 🗌	V1, DOC	0.	Reg 15	3	18). Reg		O. Reg 558 SBO	1 4					tration (Y/N)
Invoice Information Company: Contact: Address: Email:	n:	Bi	II To Same: Ye	s 🗗 No 🗆	San GW O P S	Ground Water Oil Paint Soil Columbia Ground Water SD Sediment SW Surface Wate R Rock/Shale	Field Filtered - Metals, Hg, CrV1, DOC	Metals & Inorganics	0 - 9	F1-F4 PHCs		Aroclors	Regulation 406 Characterization Package		Regulation 406 SPLP Rainwater Leach mSPLP: ☐ Metals ☐ VOCs ☐ SVOCs ☐ OC	haracter S 🗆 ABNs	☐ Moisture ☐					Hazardous or High Concen
Sample Ident	tification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals		PAHs	PCBs:	Regula	EC, SAR	Regula	Landfil TCLP: [Corros					Potentially
1. Duf 2		Nov 13	AN PN		5			V		ノ												
2. BHI3 S. BHI3 S.		Nov 15	AN PN AN PN)			1		1		-										
3. BH13 S.		1.65	PN AN PN		3			1		-												
5.	7	4	AN PN)	TOTAL STREET			- 1							-						
6.			AN PN																			
7.			AN PN					110					44									
8.			AN PN		- 557	The state of the s		III E					H.		731		Ħ			107		1070
9.			AM		14.1								P		-01	100						
O. AM PM											-11											
1. AM												H										
Samples Relinquished By (Print Name a Samples Relinquished By (Print Name a			Date	Time		Samples Received By Janet Name and Sign): Samples Received the (Print Name and Sign):	si Suni			671		LO ate	u IS		Time 4	2		Р	age _	of		
Samples Relinquished By (Print Name a	nd Sien);		D##=	Time		Samples Received By (Print Name and Sign):					0	ate			Time		Nº			63		7

Document ID: DIV-78-1511.024

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT 401 GRAYS ROAD HAMILTON, ON L8E 2Z3 (905) 318-7440

ATTENTION TO: Joanne Jackson

PROJECT: SM 220141-G

AGAT WORK ORDER: 25H309956

SOIL ANALYSIS REVIEWED BY: Chuandi Zhang, Inorganic Supervisor

TRACE ORGANICS REVIEWED BY: Radhika Chakraberty, Trace Organics Lab Manager

DATE REPORTED: Jun 19, 2025

PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 25H309956

PROJECT: SM 220141-G

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:Main St E & Prince St, Milton, ON

μg/g

μg/g

μg/g

μg/g

mS/cm

N/A

pH Units

340

10

0.051

1.8

0.7

5

5.0-9.0

5

0.2

0.040

0.10

0.005

N/A

NA

59

< 0.2

< 0.040

< 0.10

0.226

1.67

6.67

ATTENTION TO: Joanne Jackson SAMPLED BY: Joanne Jackson

O. Reg. 153(511) - Metals & Inorganics (Soil) DATE RECEIVED: 2025-06-13 **DATE REPORTED: 2025-06-19** SAMPLE DESCRIPTION: **BH13 SS6 SAMPLE TYPE:** Soil DATE SAMPLED: 2025-06-10 G/S RDL 6815698 **Parameter** Unit 7.5 8.0 <0.8 Antimony μg/g Arsenic 18 5 μg/g Barium 390 80.9 μg/g 2.0 5 0.5 Beryllium μg/g 0.7 Boron 120 5 14 μg/g 0.10 0.26 Boron (Hot Water Soluble) μg/g 1.5 Cadmium μg/g 1.2 0.5 < 0.5 Chromium μg/g 160 21 Cobalt 22 8.0 11.6 μg/g Copper 180 1.0 23.6 μg/g Lead μg/g 120 1 12 Molybdenum 6.9 0.5 0.5 μg/g Nickel 24 130 μg/g Selenium 2.4 0.8 <0.8 μg/g Silver 25 0.5 < 0.5 μg/g Thallium µg/g 1 0.5 < 0.5 Uranium μg/g 23 0.50 0.80 Vanadium 86 2.0 28.2 μg/g

Certified By:

Chumb Thung

Zinc

Chromium, Hexavalent

Electrical Conductivity (2:1)

pH, 2:1 CaCl2 Extraction

Sodium Adsorption Ratio (2:1)

Cyanide, WAD

Mercury

(Calc.)

Certificate of Analysis

AGAT WORK ORDER: 25H309956

PROJECT: SM 220141-G

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE: Main St E & Prince St, Milton, ON

ATTENTION TO: Joanne Jackson SAMPLED BY: Joanne Jackson

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2025-06-13 DATE REPORTED: 2025-06-19

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6815698 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Chumb Than

SAMPLING SITE: Main St E & Prince St, Milton, ON

Certificate of Analysis

AGAT WORK ORDER: 25H309956

PROJECT: SM 220141-G

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Joanne Jackson SAMPLED BY: Joanne Jackson

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2025-06-13					DATE REPORTED: 2025-06-19
	,	_	CRIPTION: PLE TYPE: SAMPLED:	BH13 SS6 Soil 2025-06-10	
Parameter	Unit	G/S	RDL	6815698	
laphthalene	μg/g	0.75	0.05	<0.05	
Acenaphthylene	μg/g	0.17	0.05	<0.05	
Acenaphthene	μg/g	58	0.05	<0.05	
luorene	μg/g	69	0.05	<0.05	
Phenanthrene	μg/g	7.8	0.05	<0.05	
Anthracene	μg/g	0.74	0.05	<0.05	
Fluoranthene	μg/g	0.69	0.05	<0.05	
yrene	μg/g	78	0.05	<0.05	
Benzo(a)anthracene	μg/g	0.63	0.05	<0.05	
Chrysene	μg/g	7.8	0.05	<0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	<0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	<0.05	
ndeno(1,2,3-cd)pyrene	μg/g	0.48	0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	<0.05	
Benzo(g,h,i)perylene	μg/g	7.8	0.05	< 0.05	
2-and 1-methyl Naphthalene	μg/g	3.4	0.05	<0.05	
loisture Content	%		0.1	18.3	
Surrogate	Unit	Acceptab	le Limits		
Naphthalene-d8	%	50-1	40	75	
Acridine-d9	%	50-1	40	80	
Terphenyl-d14	%	50-1	40	90	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6815698 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE: Main St E & Prince St, Milton, ON

Certificate of Analysis

AGAT WORK ORDER: 25H309956

PROJECT: SM 220141-G

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Joanne Jackson SAMPLED BY: Joanne Jackson

O. Reg. 153(511) - PCBs (Soil)

DATE RECEIVED: 2025-06-13

SAMPLE DESCRIPTION: BH13 SS6

SAMPLE TYPE: Soil

DATE SAMPLED: 2025-06-10

Parameter Unit G/S RDL 6815698

 Polychlorinated Biphenyls
 μg/g
 0.35
 0.1
 <0.1</th>

 Moisture Content
 %
 0.1
 18.3

 Surrogate
 Unit
 Acceptable Limits

 Decachlorobiphenyl
 %
 50-140
 106

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6815698 Results are based on the dry weight of soil extracted.

PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE: Main St E & Prince St, Milton, ON

Certificate of Analysis

AGAT WORK ORDER: 25H309956

PROJECT: SM 220141-G

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

ATTENTION TO: Joanne Jackson SAMPLED BY: Joanne Jackson

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2025-06-13 DATE REPORTED: 2025-06-19

	SAMPLE DES	CRIPTION:	BH13 SS6
	SAM	PLE TYPE:	Soil
	DATE S	SAMPLED:	2025-06-10
Unit	G/S	RDL	6815698
μg/g	65	5	<5
μg/g	65	5	<5
μg/g	150	10	<10
μg/g		10	<10
μg/g	1300	50	<50
μg/g		50	<50
μg/g	5600	50	<50
μg/g	5600	50	NA
%		0.1	16.5
Unit	Acceptab	le Limits	
%	50-1	40	106
%	60 4	10	90
	Unit µg/g µg/g µg/g µg/g µg/g µg/g µg/g µg	SAMI DATE S Unit G/S μg/g 65 μg/g 65 μg/g 150 μg/g 1300 μg/g 5600 μg/g 5600 % Unit Acceptab	μg/g 65 5 μg/g 65 5 μg/g 150 10 μg/g 10 μg/g 1300 50 μg/g 5600 50 μg/g 5600 50 μg/g 5600 50 μg/g 5600 50 % 0.1 Unit Acceptable Limits

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6815698 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

SAMPLING SITE: Main St E & Prince St, Milton, ON

Certificate of Analysis

AGAT WORK ORDER: 25H309956

PROJECT: SM 220141-G

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

ATTENTION TO: Joanne Jackson SAMPLED BY:Joanne Jackson

O. Reg. 153(511) - VOCs (with PHC) (Soil)

DATE RECEIVED: 2025-06-13					DATE REPORTED	: 2025-06
		SAMPLE DESC	RIPTION:	BH13 SS6		
		SAMPI	LE TYPE:	Soil		
		DATE SA	AMPLED:	2025-06-10		
Parameter	Unit	G/S	RDL	6815698		
Dichlorodifluoromethane	μg/g	25	0.05	<0.05		
Vinyl Chloride	ug/g	0.022	0.02	<0.02		
Bromomethane	ug/g	0.05	0.05	< 0.05		
Trichlorofluoromethane	ug/g	5.8	0.05	< 0.05		
Acetone	ug/g	28	0.50	<0.50		
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05		
Methylene Chloride	ug/g	0.96	0.05	<0.05		
Trans- 1,2-Dichloroethylene	ug/g	0.75	0.05	<0.05		
Methyl tert-butyl Ether	ug/g	1.4	0.05	<0.05		
1,1-Dichloroethane	ug/g	11	0.02	<0.02		
Methyl Ethyl Ketone	ug/g	44	0.50	<0.50		
Cis- 1,2-Dichloroethylene	ug/g	30	0.02	<0.02		
Chloroform	ug/g	0.18	0.04	<0.04		
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03		
1,1,1-Trichloroethane	ug/g	3.4	0.05	<0.05		
Carbon Tetrachloride	ug/g	0.12	0.05	<0.05		
Benzene	ug/g	0.17	0.02	<0.02		
1,2-Dichloropropane	ug/g	0.085	0.03	< 0.03		
Trichloroethylene	ug/g	0.52	0.03	<0.03		
Bromodichloromethane	ug/g	13	0.05	<0.05		
Methyl Isobutyl Ketone	ug/g	4.3	0.50	<0.50		
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04		
Toluene	ug/g	6	0.05	<0.05		
Dibromochloromethane	ug/g	9.4	0.05	<0.05		
Ethylene Dibromide	ug/g	0.05	0.04	<0.04		
etrachloroethylene	ug/g	2.3	0.05	<0.05		
I,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04		
Chlorobenzene	ug/g	2.7	0.05	<0.05		
Ethylbenzene	ug/g	15	0.05	<0.05		
m & p-Xylene	ug/g		0.05	<0.05		

Certified By:

SAMPLING SITE: Main St E & Prince St, Milton, ON

Certificate of Analysis

AGAT WORK ORDER: 25H309956

PROJECT: SM 220141-G

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Joanne Jackson SAMPLED BY: Joanne Jackson

O. Reg. 153(511) - VOCs (with PHC) (Soil)

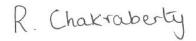
DATE RECEIVED: 2025-06-13					DATE REPORTED: 2025-06-19
	SA	AMPLE DES	CRIPTION:	BH13 SS6	
		SAME	PLE TYPE:	Soil	
		DATE S	SAMPLED:	2025-06-10	
Parameter	Unit	G/S	RDL	6815698	
Bromoform	ug/g	0.26	0.05	< 0.05	
Styrene	ug/g	2.2	0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	6	0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.097	0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	4.3	0.05	< 0.05	
Xylenes (Total)	ug/g	25	0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.083	0.05	< 0.05	
n-Hexane	μg/g	34	0.05	< 0.05	
Moisture Content	%		0.1	16.5	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	106	
4-Bromofluorobenzene	% Recovery	50-1	40	101	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 S RPI MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6815698

The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.


Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:Main St E & Prince St, Milton, ON

PROJECT: SM 220141-G

AGAT WORK ORDER: 25H309956
ATTENTION TO: Joanne Jackson
SAMPLED BY:Joanne Jackson

			Soi	l Ana	alysis	3								
RPT Date: Jun 19, 2025			DUPLICATI			REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lir	ptable nits	Recovery		eptable mits
7,117,1112,1211	ld ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Inor	rganics (Soil)	•					•	•		•	•		•	•
Antimony	6812669	<0.8	<0.8	NA	< 0.8	100%	70%	130%	96%	80%	120%	79%	70%	130%
Arsenic	6812669	3	3	NA	< 1	103%	70%	130%	103%	80%	120%	99%	70%	130%
Barium	6812669	105	105	0.0%	< 2.0	101%	70%	130%	96%	80%	120%	112%	70%	130%
Beryllium	6812669	0.5	0.5	NA	< 0.5	88%	70%	130%	102%	80%	120%	92%	70%	130%
Boron	6812669	10	9	NA	< 5	92%	70%	130%	95%	80%	120%	86%	70%	130%
Boron (Hot Water Soluble)	6807288	<0.10	<0.10	NA	< 0.10	94%	60%	140%	98%	70%	130%	99%	60%	140%
Cadmium	6812669	<0.5	<0.5	NA	< 0.5	96%	70%	130%	102%	80%	120%	94%	70%	130%
Chromium	6812669	20	19	NA	< 5	99%	70%	130%	103%	80%	120%	99%	70%	130%
Cobalt	6812669	9.4	9.1	3.2%	< 0.8	92%	70%	130%	105%	80%	120%	98%	70%	130%
Copper	6812669	33.0	33.3	0.9%	< 1.0	87%	70%	130%	103%	80%	120%	NA	70%	130%
Lead	6812669	7	7	0.0%	< 1	94%	70%	130%	107%	80%	120%	97%	70%	130%
Molybdenum	6812669	<0.5	< 0.5	NA	< 0.5	98%	70%	130%	105%	80%	120%	109%	70%	130%
Nickel	6812669	18	18	0.0%	< 1	92%	70%	130%	100%	80%	120%	92%	70%	130%
Selenium	6812669	<0.8	<0.8	NA	< 0.8	97%	70%	130%	107%	80%	120%	109%	70%	130%
Silver	6812669	<0.5	<0.5	NA	< 0.5	86%	70%	130%	97%	80%	120%	87%	70%	130%
Thallium	6812669	0.5	0.6	NA	2.3	100%	70%	130%	113%	80%	120%	102%	70%	130%
Uranium	6812669	0.53	< 0.50	NA	< 0.50	103%	70%	130%	105%	80%	120%	103%	70%	130%
Vanadium	6812669	28.0	27.2	2.9%	< 2.0	96%	70%	130%	102%	80%	120%	107%	70%	130%
Zinc	6812669	38	37	2.7%	< 5	96%	70%	130%	102%	80%	120%	96%	70%	130%
Chromium, Hexavalent	6815698 6815698	<0.2	<0.2	NA	< 0.2	101%	70%	130%	94%	80%	120%	74%	70%	130%
Cyanide, WAD	6813073	<0.040	<0.040	NA	< 0.040	98%	70%	130%	95%	80%	120%	90%	70%	130%
Mercury	6812669	<0.10	<0.10	NA	< 0.10	94%	70%	130%	98%	80%	120%	99%	70%	130%
Electrical Conductivity (2:1)	6812669	0.163	0.155	5.1%	< 0.005	102%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	6812669	0.228	0.224	1.8%	NA	NA								
pH, 2:1 CaCl2 Extraction	6813073	6.59	6.63	0.6%		98%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Matrix spike: Spike level < native concentration. Matrix spike acceptance limits do not apply.

Certified By:

Chumb Thung

Page 9 of 16

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:Main St E & Prince St, Milton, ON

PROJECT: SM 220141-G

AGAT WORK ORDER: 25H309956
ATTENTION TO: Joanne Jackson
SAMPLED BY:Joanne Jackson

			Trac	e Or	gani	cs Ar	nalys	is								
RPT Date: Jun 19, 2025			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	SPIKE	E MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1 1	ptable nits	Recovery	Lie	ptable nits	
TANAMETER	Daton	ld	Dup " !	Dup #2	111 2		Value	Lower	Upper	11000101		Upper	necovery	Lower	Uppe	
O. Reg. 153(511) - PAHs (Soil)	<u> </u>		•					•			•					
Naphthalene	6812817		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	98%	50%	140%	100%	50%	140%	
Acenaphthylene	6812817		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	90%	50%	140%	88%	50%	140%	
Acenaphthene	6812817		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	88%	50%	140%	95%	50%	140%	
Fluorene	6812817		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	98%	50%	140%	100%	50%	140%	
Phenanthrene	6812817		<0.05	<0.05	NA	< 0.05	90%	50%	140%	90%	50%	140%	90%	50%	140%	
Anthracene	6812817		<0.05	<0.05	NA	< 0.05	106%	50%	140%	98%	50%	140%	93%	50%	140%	
Fluoranthene	6812817		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	98%	50%	140%	100%	50%	140%	
Pyrene	6812817		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	100%	50%	140%	98%	50%	140%	
Benzo(a)anthracene	6812817		< 0.05	< 0.05	NA	< 0.05	80%	50%	140%	98%	50%	140%	90%	50%	140%	
Chrysene	6812817		<0.05	< 0.05	NA	< 0.05	121%	50%	140%	100%	50%	140%	88%	50%	140%	
Benzo(b)fluoranthene	6812817		<0.05	<0.05	NA	< 0.05	71%	50%	140%	98%	50%	140%	98%	50%	140%	
Benzo(k)fluoranthene	6812817		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	93%	50%	140%	95%	50%	140%	
Benzo(a)pyrene	6812817		< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	98%	50%	140%	95%	50%	140%	
Indeno(1,2,3-cd)pyrene	6812817		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	90%	50%	140%	90%	50%	140%	
Dibenz(a,h)anthracene	6812817		<0.05	<0.05	NA	< 0.05	99%	50%	140%	88%	50%	140%	90%	50%	140%	
Benzo(g,h,i)perylene	6812817		<0.05	<0.05	NA	< 0.05	94%	50%	140%	95%	50%	140%	95%	50%	140%	
O. Reg. 153(511) - PCBs (Soil)																
Polychlorinated Biphenyls	6816041		< 0.1	< 0.1	NA	< 0.1	105%	60%	140%	92%	60%	140%	92%	60%	140%	
O. Reg. 153(511) - VOCs (with	PHC) (Soil)															
Dichlorodifluoromethane	6741409		< 0.05	< 0.05	NA	< 0.05	65%	60%	140%	69%	50%	140%	95%	50%	140%	
Vinyl Chloride	6741409		< 0.02	< 0.02	NA	< 0.02	81%	60%	140%	85%	50%	140%	106%	50%	140%	
Bromomethane	6741409		< 0.05	< 0.05	NA	< 0.05	105%	60%	140%	89%	50%	140%	73%	50%	140%	
Trichlorofluoromethane	6741409		< 0.05	< 0.05	NA	< 0.05	87%	60%	140%	82%	50%	140%	109%	50%	140%	
Acetone	6741409		<0.50	<0.50	NA	< 0.50	96%	60%	140%	77%	50%	140%	70%	50%	140%	
1,1-Dichloroethylene	6741409		<0.05	<0.05	NA	< 0.05	95%	60%	140%	78%	60%	130%	65%	50%	140%	
Methylene Chloride	6741409		< 0.05	< 0.05	NA	< 0.05	96%	60%	140%	95%	60%	130%	101%	50%	140%	
Trans- 1,2-Dichloroethylene	6741409		< 0.05	< 0.05	NA	< 0.05	81%	60%	140%	95%	60%	130%	90%	50%	140%	
Methyl tert-butyl Ether	6741409		< 0.05	< 0.05	NA	< 0.05	69%	60%	140%	92%	60%	130%	99%	50%	140%	
1,1-Dichloroethane	6741409		<0.02	<0.02	NA	< 0.02	92%	60%	140%	96%	60%	130%	113%	50%	140%	
Methyl Ethyl Ketone	6741409		<0.50	<0.50	NA	< 0.50	100%	60%	140%	92%	50%	140%	60%	50%	140%	
Cis- 1,2-Dichloroethylene	6741409		<0.02	<0.02	NA	< 0.02	83%		140%	89%		130%	118%		140%	
Chloroform	6741409		<0.04	< 0.04	NA	< 0.04	85%		140%	76%		130%	83%		140%	
1,2-Dichloroethane	6741409		< 0.03	< 0.03	NA	< 0.03	69%	60%		113%	60%		97%		140%	
1,1,1-Trichloroethane	6741409		<0.05	<0.05	NA	< 0.05	119%	60%	140%	118%		130%	80%	50%	140%	
Carbon Tetrachloride	6741409		<0.05	<0.05	NA	< 0.05	69%	60%	140%	84%	60%	130%	106%	50%	140%	
Benzene	6741409		<0.02	< 0.02	NA	< 0.02	64%		140%	98%	60%		87%		140%	
1,2-Dichloropropane	6741409		< 0.03	< 0.03	NA	< 0.03	96%			119%	60%	130%	103%		140%	
Trichloroethylene	6741409		< 0.03	< 0.03	NA	< 0.03	80%		140%	110%		130%	95%	50%		

AGAT QUALITY ASSURANCE REPORT (V1)

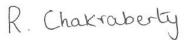
Page 10 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:Main St E & Prince St, Milton, ON


PROJECT: SM 220141-G

AGAT WORK ORDER: 25H309956
ATTENTION TO: Joanne Jackson
SAMPLED BY:Joanne Jackson

	7	race	Org	anics	Ana	alysis	(Coı	ntin	ued	l)					
RPT Date: Jun 19, 2025				UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Acceptable Limits		Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Bromodichloromethane	6741409		<0.05	<0.05	NA	< 0.05	76%	60%	140%	92%	60%	130%	79%	50%	140%
Methyl Isobutyl Ketone	6741409		<0.50	<0.50	NA	< 0.50	92%	60%	140%	73%	50%	140%	65%	50%	140%
1,1,2-Trichloroethane	6741409		< 0.04	< 0.04	NA	< 0.04	109%	60%	140%	105%	60%	130%	77%	50%	140%
Toluene	6741409		< 0.05	< 0.05	NA	< 0.05	67%	60%	140%	113%	60%	130%	84%	50%	140%
Dibromochloromethane	6741409		< 0.05	< 0.05	NA	< 0.05	101%	60%	140%	114%	60%	130%	76%	50%	140%
Ethylene Dibromide	6741409		<0.04	<0.04	NA	< 0.04	93%	60%	140%	108%	60%	130%	77%	50%	140%
Tetrachloroethylene	6741409		<0.05	<0.05	NA	< 0.05	96%	60%	140%	110%	60%	130%	78%	50%	140%
1,1,1,2-Tetrachloroethane	6741409		< 0.04	< 0.04	NA	< 0.04	92%	60%	140%	84%	60%	130%	64%	50%	140%
Chlorobenzene	6741409		<0.05	< 0.05	NA	< 0.05	106%	60%	140%	105%	60%	130%	92%	50%	140%
Ethylbenzene	6741409		< 0.05	< 0.05	NA	< 0.05	92%	60%	140%	107%	60%	130%	91%	50%	140%
m & p-Xylene	6741409		<0.05	<0.05	NA	< 0.05	110%	60%	140%	115%	60%	130%	109%	50%	140%
Bromoform	6741409		<0.05	< 0.05	NA	< 0.05	99%	60%	140%	118%	60%	130%	99%	50%	140%
Styrene	6741409		< 0.05	< 0.05	NA	< 0.05	95%	60%	140%	85%	60%	130%	113%	50%	140%
1,1,2,2-Tetrachloroethane	6741409		< 0.05	< 0.05	NA	< 0.05	70%	60%	140%	114%	60%	130%	70%	50%	140%
o-Xylene	6741409		< 0.05	< 0.05	NA	< 0.05	109%	60%	140%	109%	60%	130%	87%	50%	140%
1,3-Dichlorobenzene	6741409		<0.05	<0.05	NA	< 0.05	119%	60%	140%	116%	60%	130%	100%	50%	140%
1,4-Dichlorobenzene	6741409		<0.05	<0.05	NA	< 0.05	113%	60%	140%	109%	60%	130%	87%	50%	140%
1,2-Dichlorobenzene	6741409		< 0.05	< 0.05	NA	< 0.05	113%	60%	140%	99%	60%	130%	75%	50%	140%
n-Hexane	6741409		<0.05	<0.05	NA	< 0.05	64%	60%	140%	77%	60%	130%	97%	50%	140%
O. Reg. 153(511) - PHCs F1 - I	F4 (with PAHs a	and VOC)	(Soil)												
F1 (C6 to C10)	6814715	-	<5	<5	NA	< 5	94%	80%	120%	105%	60%	140%	90%	60%	140%
F2 (C10 to C16)	6812958		< 10	< 10	NA	< 10	102%	60%	140%	102%	60%	140%	101%	60%	140%
F3 (C16 to C34)	6812958		< 50	< 50	NA	< 50	107%	60%	140%	117%	60%	140%	122%	60%	140%
F4 (C34 to C50)	6812958		< 50	< 50	NA	< 50	91%	60%	140%	86%	60%	140%	89%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: SM 220141-G
SAMPLING SITE:Main St E & Prince St, Milton, ON

AGAT WORK ORDER: 25H309956 ATTENTION TO: Joanne Jackson SAMPLED BY:Joanne Jackson

DADAMETED	T	LITERATURE REFERENCE	I
PARAMETER Soil Applysic	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387 $$	SEGMENTED FLOW ANALYSIS
Mercury	MET-93-6103	modified from EPA 7471B and SM 3112 B	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6075	modified from MSA PART 3, CH 14 and SM 2510 B	PC TITRATE
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6075	modified from EPA 9045D, MCKEAGUE 3.11 E3137	PC TITRATE

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:Main St E & Prince St, Milton, ON

PROJECT: SM 220141-G

AGAT WORK ORDER: 25H309956 ATTENTION TO: Joanne Jackson SAMPLED BY:Joanne Jackson

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Polychlorinated Biphenyls	ORG-91-5113	modified from EPA SW-846 3570 & 8082A	GC/ECD
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541 & 8082A	GC/ECD
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: SM 220141-G
SAMPLING SITE:Main St E & Prince St, Milton, ON

AGAT WORK ORDER: 25H309956 ATTENTION TO: Joanne Jackson SAMPLED BY:Joanne Jackson

SAMPLING SHE:Main St E & Prince	· · ·	SAMPLED B1:30	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: SM 220141-G

AGAT WORK ORDER: 25H309956 ATTENTION TO: Joanne Jackson SAMPLED BY:Joanne Jackson

SAMPLING SITE: Main St E & Prince St, Milton, ON

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Chlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035A and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035A & EPA 8260D	(P&T)GC/MS

CalculationLaboratories

Have feedback?

Scan here for a quick survey!

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 12.5100 Fax: 905.712.5122 webearth.agatlabs.com **Laboratory Use Only** Work Order #: Cooler Quantity:

Chain	of	Custo	dy	Reco	ord
Report	Info	rmation:			
Company:			20	ilma	

Chain of Custody Recor	cl If this is a t	Orinking Water	sample, pleas	se use Drin	nking Water Chain of Custody	vater c	ansume	rd by he	mans					Temper			61	5	916	-0
Report Information: Company: Contact: Address: Phone: Reports to be sent to: 1. Email: Process of the sent to: The sent to:	7 Fax;	on, ON	ultants arkesia	(Please	Regulatory Requirements: see check all applicable boxes) Regulation 153/04 Table		s	ectives	er Qua			Ti	Notes: urna egula	ar TAT TAT (Rusin 3 Busin Days	d Tim	rges Apply)	T) Rec	quire cusiness	d:	
Project Information: Project: Site Location: Sampled By: Project Information: SM 230141 Main St E Print Jocume Jac					this submission for a Record of Site Condition (RSC)? Yes No		eport rtifica Yes	te of	Ana			32		*TAT is 6	exclusi ay' an	ve of we	ekends i	and sta	or rush TAT tutory holid your AGAT (
AGAT Quote #: Please note: If quotation number	PO:		anolysis	Leg	gal Sample 🗆	crVI, DOC	0.	Reg 15	3				O. Reg	20	0. Reg					2
Invoice Information: Company: Contact: Address: Email:		II To Same: Ye	es No 🗆	Sar GW O P	Ground Water SD Sediment Oil SW Surface Water Paint R Rock/Shale Soil	Field Filtered - Metals, Hg, C	Metals & Inorganics	s - 🗆 CrVI, 🗆 Hg, 🗆 HWSB	F1-F4 PHCs		PCBs: Amelors	Regulation 406 Characterization Package	Metals, BTEX, F1-F4 SAR	Regulation 406 SPLP Rainwater Leach mSPLP: □ Metals □ VoCs □ SVoCs □ OC	Landfill Disposal Characterization TCLP: TCLP: ☐M&I ☐VOCs ☐ABNs ☐Braye☐P	<u>;</u>		1 × 1		
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		Y/N	Metal	Metals - [BTEX,	VOC	PCRs.	Regul	PH, M	Regulation mSPLP: [Landfi TCLP:	Corros				
1. BH 13 SS 2.	Junitofor	S AN	36)(10)	S	WHAT I		>		7		> >	>								
3.		AN PN					71					V								
4.	THE STATE S	AN PN		Mer.																
5.		AN PN		Пон	a marginal and an artist and									- 59				1 0		
6.)0 III	AN PN			The second second					-1		127								
7.		AN PN				4 .5				7.1										
8.	- ell 158	AN PN		1.50								359		150						
9.		AN PN																		
10.		AN PN		1																
11.	1	AN PN					L,													
Samples Retinquished By (Print Name and Sign):	The	Date-Juni	-13/25		Sappled Scened By (Print Susseand Sign):		1/-	71	/	7	Date //	2/20	-	7:5	ann	1				

Appendix 'C'

1. AGAT Certificate of Analysis – Groundwater

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT 401 GRAYS ROAD HAMILTON, ON L8E 2Z3 (905) 318-7440

ATTENTION TO: Geena Gilmour

PROJECT: 220141

AGAT WORK ORDER: 24T229382

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganic Team Lead

DATE REPORTED: Dec 12, 2024

PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

**!---

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 17

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE: Main St E & Prince St, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T229382

PROJECT: 220141

ATTENTION TO: Geena Gilmour

SAMPLED BY:GG / BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Water)

				00	,00(0)		,				
DATE RECEIVED: 2024-12-06								I	DATE REPORTI	ED: 2024-12-12	
		DATE	PLE TYPE: SAMPLED:	MW1-S1 Water 2024-12-05	MW4-S1 Water 2024-12-05	MW5-S1 Water 2024-12-05 12:00	MW8-S1 Water 2024-12-05 12:00	MW10-S1 Water 2024-12-05 12:00	MW12-S1 Water 2024-12-05 12:00	DUP1 Water 2024-12-05 12:00	
Parameter	Unit	G/S	RDL	6387211	6387219	6387220	6387221	6387222	6387223	6387224	
Naphthalene	μg/L	6400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthylene	μg/L	1.8	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthene	μg/L	1700	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Fluorene	μg/L	400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Phenanthrene	μg/L	580	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Anthracene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Fluoranthene	μg/L	130	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Pyrene	μg/L	68	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	μg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chrysene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.52	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
2-and 1-methyl Napthalene	μg/L	1800	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Sediment				2	2	2	2	2	2	2	
Surrogate	Unit	Acceptab	le Limits								
Naphthalene-d8	%	50-	140	107	137	115	106	121	133	136	
Acridine-d9	%	50-	140	125	77	80	85	84	99	106	
Terphenyl-d14	%	50-	140	88	138	124	116	103	122	106	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6387211-6387224 Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

MPopnikoloj

< 0.1

78

AGAT WORK ORDER: 24T229382

PROJECT: 220141

ATTENTION TO: Geena Gilmour

SAMPLED BY:GG / BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE: Main St E & Prince St, Milton

				O. Reg	j. 153(511) -	PCBs (Water	er)
DATE RECEIVED: 2024-12-06							DATE REPORTED: 2024-12-12
		SAMPLE DES	CRIPTION:	MW1-S1	MW4-S1	MW10-S1	
		SAMI	PLE TYPE:	Water	Water	Water	
		DATES	SAMPLED:	2024-12-05	2024-12-05	2024-12-05 12:00	
Parameter	Unit	G/S	RDL	6387211	6387219	6387222	

< 0.1

79

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

15

Acceptable Limits

60-140

μg/L

Unit

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6387211-6387222 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

0.1

< 0.1

88

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Polychlorinated Biphenyls

Decachlorobiphenyl

Surrogate

SAMPLING SITE: Main St E & Prince St, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T229382

PROJECT: 220141

ATTENTION TO: Geena Gilmour

SAMPLED BY:GG / BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2024-12-06								[DATE REPORTE	ED: 2024-12-12	
	s		CRIPTION: PLE TYPE: SAMPLED:	MW1-S1 Water 2024-12-05	MW4-S1 Water 2024-12-05	MW5-S1 Water 2024-12-05 12:00	MW8-S1 Water 2024-12-05 12:00	MW10-S1 Water 2024-12-05 12:00	MW12-S1 Water 2024-12-05 12:00	DUP1 Water 2024-12-05 12:00	
Parameter	Unit	G/S	RDL	6387211	6387219	6387220	6387221	6387222	6387223	6387224	
F1 (C6 to C10)	μg/L	750	25	<25	<25	<25	<25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25	<25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	<100	<100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	<100	<100	<100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA	NA	NA	NA	NA	
Sediment				2	2	2	2	2	2	2	
Surrogate	Unit	Acceptabl	e Limits								
Toluene-d8	%	50-1	40	98	92	97	93	95	96	94	
Terphenyl	% Recovery	60-1	40	88	88	79	75	96	86	97	

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6387211-6387224 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amounts

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE: Main St E & Prince St, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T229382

PROJECT: 220141

ATTENTION TO: Geena Gilmour

SAMPLED BY:GG / BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-12-06								[DATE REPORTE	ED: 2024-12-12	
			RIPTION: LE TYPE: AMPLED:	MW1-S1 Water 2024-12-05	MW4-S1 Water 2024-12-05	MW5-S1 Water 2024-12-05 12:00	MW8-S1 Water 2024-12-05 12:00	MW10-S1 Water 2024-12-05 12:00	MW12-S1 Water 2024-12-05 12:00	DUP1 Water 2024-12-05 12:00	
Parameter	Unit	G/S	RDL	6387211	6387219	6387220	6387221	6387222	6387223	6387224	
Dichlorodifluoromethane	μg/L	4400	0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	
Vinyl Chloride	μg/L	1.7	0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	56	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	2500	0.40	<0.40	< 0.40	< 0.40	<0.40	< 0.40	< 0.40	<0.40	
Acetone	μg/L	130000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	17	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	
Methylene Chloride	μg/L	5500	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	
trans- 1,2-Dichloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	1400	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	3100	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	
Methyl Ethyl Ketone	μg/L	1500000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	22	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	12	0.20	<0.20	<0.20	3.38	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	6700	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	
Carbon Tetrachloride	μg/L	8.4	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	430	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	140	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	85000	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	580000	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	30	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	<0.20	0.34	<0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	82000	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.83	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	17	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	28	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	630	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2300	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	

Certified By:

NPopukolof

SAMPLING SITE: Main St E & Prince St, Milton

Certificate of Analysis

AGAT WORK ORDER: 24T229382

PROJECT: 220141

ATTENTION TO: Geena Gilmour

SAMPLED BY:GG / BS

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - VOCs (with PHC) (Water)

DATE RECEIVED: 2024-12-06									DATE REPORTE	ED: 2024-12-12	
	S	AMPLE DESC	CRIPTION:	MW1-S1	MW4-S1	MW5-S1	MW8-S1	MW10-S1	MW12-S1	DUP1	
		SAME	PLE TYPE:	Water	Water	Water	Water	Water	Water	Water	
		DATE S	SAMPLED:	2024-12-05	2024-12-05	2024-12-05 12:00	2024-12-05 12:00	2024-12-05 12:00	2024-12-05 12:00	2024-12-05 12:00	
Parameter	Unit	G/S	RDL	6387211	6387219	6387220	6387221	6387222	6387223	6387224	
n & p-Xylene	μg/L		0.20	<0.20	<0.20	0.31	<0.20	<0.20	<0.20	<0.20	
Bromoform	μg/L	770	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Styrene	μg/L	9100	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
,1,2,2-Tetrachloroethane	μg/L	15	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	<0.10	0.19	<0.10	<0.10	<0.10	<0.10	
I,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
I,4-Dichlorobenzene	μg/L	67	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
1,2-Dichlorobenzene	μg/L	9600	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
,3-Dichloropropene	μg/L	45	0.30	< 0.30	< 0.30	<0.30	< 0.30	<0.30	< 0.30	<0.30	
(ylenes (Total)	μg/L	4200	0.20	<0.20	<0.20	0.50	<0.20	<0.20	<0.20	<0.20	
n-Hexane	μg/L	520	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Surrogate	Unit	Acceptab	e Limits								
Toluene-d8	% Recovery	50-1	40	98	92	97	93	95	96	94	
4-Bromofluorobenzene	% Recovery	50-1	40	98	96	101	93	94	98	92	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6387211-6387224 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 24T229382

PROJECT: 220141

ATTENTION TO: Geena Gilmour

SAMPLED BY:GG/BS

SAMPLING SITE: Main St E & Prince St, Milton

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2024-12-0	16								DATE REPORTE	ED: 2024-12-12	4-12-12	
	s		CRIPTION: PLE TYPE: SAMPLED:	MW1-S1 Water 2024-12-05	MW4-S1 Water 2024-12-05		MW5-S1 Water 2024-12-05 12:00		MW8-S1 Water 2024-12-05 12:00	MW10-S1 Water 2024-12-05 12:00	MW12-S1 Water 2024-12-05 12:00	
Parameter	Unit	G/S	RDL	6387211	6387219	RDL	6387220	RDL	6387221	6387222	6387223	
Dissolved Antimony	μg/L	20000	1.0	<1.0	<1.0	1.0	<1.0	1.0	<1.0	<1.0	<1.0	
Dissolved Arsenic	μg/L	1900	1.0	1.9	1.2	1.0	4.7	1.0	1.8	2.3	1.4	
Dissolved Barium	μg/L	29000	2.0	176	124	2.0	84.8	2.0	99.5	53.6	55.9	
Dissolved Beryllium	μg/L	67	0.50	< 0.50	<0.50	0.50	<0.50	0.50	< 0.50	< 0.50	< 0.50	
Dissolved Boron	μg/L	45000	10.0	636	356	10.0	574	10.0	414	175	248	
Dissolved Cadmium	μg/L	2.7	0.20	<0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	810	2.0	<2.0	<2.0	2.0	<2.0	2.0	<2.0	<2.0	<2.0	
Dissolved Cobalt	μg/L	66	0.50	0.80	1.24	0.50	1.00	0.50	2.33	5.29	10.2	
Dissolved Copper	μg/L	87	1.0	1.3	1.2	1.0	1.2	1.0	<1.0	1.2	1.2	
Dissolved Lead	μg/L	25	0.50	<0.50	0.66	0.50	1.19	0.50	< 0.50	< 0.50	< 0.50	
Dissolved Molybdenum	μg/L	9200	0.50	10.9	4.40	0.50	10.2	0.50	7.18	4.25	5.62	
Dissolved Nickel	μg/L	490	1.0	1.7	4.1	1.0	3.6	1.0	3.6	6.2	9.7	
Dissolved Selenium	μg/L	63	1.0	1.5	3.8	1.0	2.7	1.0	1.2	1.3	1.9	
Dissolved Silver	μg/L	1.5	0.20	<0.20	<0.20	0.20	<0.20	0.20	<0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	510	0.30	< 0.30	< 0.30	0.30	< 0.30	0.30	< 0.30	< 0.30	< 0.30	
Dissolved Uranium	μg/L	420	0.50	4.00	4.34	0.50	7.10	0.50	5.65	6.20	8.10	
Dissolved Vanadium	μg/L	250	0.40	1.03	0.43	0.40	2.29	0.40	1.58	<0.40	1.30	
Dissolved Zinc	μg/L	1100	5.0	<5.0	<5.0	5.0	<5.0	5.0	<5.0	<5.0	<5.0	
Mercury	μg/L	2.8	0.02	<0.02	<0.02	0.02	< 0.02	0.02	<0.02	0.02	< 0.02	
Chromium VI	μg/L	140	2.000	<2.000	<2.000	2.000	<2.000	2.000	<2.000	<2.000	<2.000	
Cyanide, WAD	μg/L	66	2	<2	<2	2	<2	2	<2	<2	<2	
Dissolved Sodium	μg/L	2300000	50	83000	71600	100	108000	50	37700	47300	42400	
Chloride	μg/L	2300000	100	201000	265000	100	531000	100	52100	146000	141000	
Electrical Conductivity	uS/cm	NA	2	1400	1720	2	2890	2	1170	1240	1390	
рН	pH Units		NA	7.75	7.65	NA	7.75	NA	7.87	7.71	7.72	

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 24T229382

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:Main St E & Prince St, Milton

ATTENTION TO: Geena Gilmour SAMPLED BY:GG / BS

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2024-12-0	06				DATE REPORTED: 2024-12-12
	s		CRIPTION: PLE TYPE: SAMPLED:	DUP1 Water 2024-12-05 12:00	
Parameter	Unit	G/S	RDL	6387224	
Dissolved Antimony	μg/L	20000	1.0	<1.0	
Dissolved Arsenic	μg/L	1900	1.0	1.6	
Dissolved Barium	μg/L	29000	2.0	100	
Dissolved Beryllium	μg/L	67	0.50	< 0.50	
Dissolved Boron	μg/L	45000	10.0	416	
Dissolved Cadmium	μg/L	2.7	0.20	<0.20	
Dissolved Chromium	μg/L	810	2.0	<2.0	
Dissolved Cobalt	μg/L	66	0.50	1.97	
Dissolved Copper	μg/L	87	1.0	<1.0	
Dissolved Lead	μg/L	25	0.50	< 0.50	
Dissolved Molybdenum	μg/L	9200	0.50	7.16	
Dissolved Nickel	μg/L	490	1.0	3.3	
Dissolved Selenium	μg/L	63	1.0	2.3	
Dissolved Silver	μg/L	1.5	0.20	<0.20	
Dissolved Thallium	μg/L	510	0.30	< 0.30	
Dissolved Uranium	μg/L	420	0.50	5.51	
Dissolved Vanadium	μg/L	250	0.40	1.36	
Dissolved Zinc	μg/L	1100	5.0	<5.0	
Mercury	μg/L	2.8	0.02	<0.02	
Chromium VI	μg/L	140	2.000	<2.000	
Cyanide, WAD	μg/L	66	2	<2	
Dissolved Sodium	μg/L	2300000	50	37500	
Chloride	μg/L	2300000	100	51800	
Electrical Conductivity	uS/cm	NA	2	1170	
pH	pH Units		NA	7.90	

Certificate of Analysis

AGAT WORK ORDER: 24T229382

PROJECT: 220141

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

ATTENTION TO: Geena Gilmour

SAMPLED BY:GG/BS

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2024-12-06 DATE REPORTED: 2024-12-12

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6387211-6387224 Metals analysis completed on a filtered sample.

SAMPLING SITE: Main St E & Prince St, Milton

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured

results

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

CHARTERED S NIVINE BASILY S OHEMIST S OHEMIST

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141
SAMPLING SITE:Main St E & Prince St, Milton

AGAT WORK ORDER: 24T229382
ATTENTION TO: Geena Gilmour

SAMPLED BY:GG / BS

Trace Organics Analysis															
RPT Date: Dec 12, 2024				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery		eptable mits
TANAMETER	Batch	ld	Dup#1	Dup #2	I D		Value	Lower	Upper	Recovery		Upper	Recovery	Lower	Uppe
O. Reg. 153(511) - PHCs F1 - F	4 (with PAHs a	and VOC)	(Water)								•				
F1 (C6 to C10)	6385566		<25	<25	NA	< 25	88%	60%	140%	91%	60%	140%	82%	60%	140%
F2 (C10 to C16)	6383192		< 100	< 100	NA	< 100	116%	60%	140%	78%	60%	140%	85%	60%	140%
F3 (C16 to C34)	6383192		< 100	< 100	NA	< 100	125%	60%	140%	82%	60%	140%	61%	60%	140%
F4 (C34 to C50)	6383192		< 100	< 100	NA	< 100	86%	60%	140%	99%	60%	140%	107%	60%	140%
O. Reg. 153(511) - PAHs (Wate	r)														
Naphthalene	6383805		<0.20	<0.20	NA	< 0.20	91%	50%	140%	73%	50%	140%	94%	50%	140%
Acenaphthylene	6383805		<0.20	<0.20	NA	< 0.20	92%	50%	140%	73%	50%	140%	93%	50%	140%
Acenaphthene	6383805		<0.20	<0.20	NA	< 0.20	91%	50%	140%	79%	50%	140%	102%	50%	140%
Fluorene	6383805		<0.20	<0.20	NA	< 0.20	97%	50%	140%	83%	50%	140%	106%	50%	140%
Phenanthrene	6383805		<0.10	<0.10	NA	< 0.10	101%	50%	140%	87%	50%	140%	114%	50%	140%
Anthracene	6383805		<0.10	<0.10	NA	< 0.10	77%	50%	140%	81%	50%	140%	108%	50%	140%
Fluoranthene	6383805		<0.20	< 0.20	NA	< 0.20	106%	50%	140%	88%	50%	140%	111%	50%	140%
Pyrene	6383805		<0.20	< 0.20	NA	< 0.20	107%	50%	140%	89%	50%	140%	110%	50%	140%
Benzo(a)anthracene	6383805		<0.20	< 0.20	NA	< 0.20	97%	50%	140%	75%	50%	140%	89%	50%	140%
Chrysene	6383805		<0.10	<0.10	NA	< 0.10	104%	50%	140%	72%	50%	140%	106%	50%	140%
Benzo(b)fluoranthene	6383805		<0.10	<0.10	NA	< 0.10	97%	50%	140%	88%	50%	140%	86%	50%	140%
Benzo(k)fluoranthene	6383805		<0.10	<0.10	NA	< 0.10	104%	50%	140%	97%	50%	140%	98%	50%	140%
Benzo(a)pyrene	6383805		<0.01	<0.01	NA	< 0.01	87%	50%	140%	84%	50%	140%	84%	50%	140%
Indeno(1,2,3-cd)pyrene	6383805		<0.20	<0.20	NA	< 0.20	86%	50%	140%	79%	50%	140%	82%	50%	140%
Dibenz(a,h)anthracene	6383805		<0.20	<0.20	NA	< 0.20	88%	50%	140%	74%	50%	140%	80%	50%	140%
Benzo(g,h,i)perylene	6383805		<0.20	<0.20	NA	< 0.20	90%	50%	140%	79%	50%	140%	89%	50%	140%
O. Reg. 153(511) - VOCs (with	PHC) (Water)														
Dichlorodifluoromethane	6385566		< 0.40	< 0.40	NA	< 0.40	91%	50%	140%	102%	50%	140%	77%	50%	140%
Vinyl Chloride	6385566		<0.17	<0.17	NA	< 0.17	97%	50%	140%	74%	50%	140%	119%	50%	140%
Bromomethane	6385566		<0.20	<0.20	NA	< 0.20	80%	50%	140%	60%	50%	140%	52%	50%	140%
Trichlorofluoromethane	6385566		< 0.40	< 0.40	NA	< 0.40	88%	50%	140%	112%	50%	140%	69%	50%	140%
Acetone	6385566		<1.0	<1.0	NA	< 1.0	88%	50%	140%	92%	50%	140%	98%	50%	140%
1,1-Dichloroethylene	6385566		<0.30	<0.30	NA	< 0.30	75%	50%	140%	86%	60%	130%	101%	50%	140%
Methylene Chloride	6385566		<0.30	< 0.30	NA	< 0.30	95%	50%	140%	78%	60%	130%	106%	50%	140%
trans- 1,2-Dichloroethylene	6385566		<0.20	<0.20	NA	< 0.20	84%	50%	140%	80%	60%	130%	117%	50%	140%
Methyl tert-butyl ether	6385566		<0.20	<0.20	NA	< 0.20	101%	50%	140%	114%	60%	130%	104%	50%	140%
1,1-Dichloroethane	6385566		<0.30	<0.30	NA	< 0.30	86%	50%	140%	79%	60%	130%	94%	50%	140%
Methyl Ethyl Ketone	6385566		<1.0	<1.0	NA	< 1.0	89%	50%	140%	85%	50%	140%	88%	50%	140%
cis- 1,2-Dichloroethylene	6385566		<0.20	<0.20	NA	< 0.20	86%	50%	140%	77%	60%	130%	86%	50%	140%
Chloroform	6385566		<0.20	<0.20	NA	< 0.20	94%	50%	140%	79%	60%	130%	90%	50%	140%
1,2-Dichloroethane	6385566		<0.20	<0.20	NA	< 0.20	97%	50%	140%	77%	60%	130%	87%	50%	140%
1,1,1-Trichloroethane	6385566		<0.30	<0.30	NA	< 0.30	91%	50%	140%	76%	60%	130%	96%	50%	140%
Carbon Tetrachloride	6385566		<0.20	<0.20	NA	< 0.20	88%	50%	140%	71%	60%	130%	89%	50%	1/00

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 24T229382 PROJECT: 220141

SAMPLING SITE: Main St E & Prince St, Milton

ATTENTION TO: Geena Gilmour

SAMPLED BY:GG/BS

	٦	race	Orga	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Dec 12, 2024				UPLICAT	E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable mits	Recovery	Lin	ptable nits	Recovery		ptable nits
		IG					value	Lower Upper		Lower	Upper		Lower	Upper	
Benzene	6385566		<0.20	<0.20	NA	< 0.20	89%	50%	140%	75%	60%	130%	85%	50%	140%
1,2-Dichloropropane	6385566		<0.20	< 0.20	NA	< 0.20	96%	50%	140%	72%	60%	130%	84%	50%	140%
Trichloroethylene	6385566		<0.20	< 0.20	NA	< 0.20	90%	50%	140%	77%	60%	130%	83%	50%	140%
Bromodichloromethane	6385566		<0.20	<0.20	NA	< 0.20	101%	50%	140%	72%	60%	130%	88%	50%	140%
Methyl Isobutyl Ketone	6385566		<1.0	<1.0	NA	< 1.0	115%	50%	140%	83%	50%	140%	87%	50%	140%
1,1,2-Trichloroethane	6385566		<0.20	<0.20	NA	< 0.20	108%	50%	140%	96%	60%	130%	103%	50%	140%
Toluene	6385566		<0.20	<0.20	NA	< 0.20	105%	50%	140%	87%	60%	130%	96%	50%	140%
Dibromochloromethane	6385566		<0.10	<0.10	NA	< 0.10	108%	50%	140%	82%	60%	130%	106%	50%	140%
Ethylene Dibromide	6385566		<0.10	<0.10	NA	< 0.10	107%	50%	140%	80%	60%	130%	99%	50%	140%
Tetrachloroethylene	6385566		<0.20	<0.20	NA	< 0.20	99%	50%	140%	85%	60%	130%	93%	50%	140%
1,1,1,2-Tetrachloroethane	6385566		<0.10	<0.10	NA	< 0.10	116%	50%	140%	75%	60%	130%	97%	50%	140%
Chlorobenzene	6385566		<0.10	<0.10	NA	< 0.10	109%	50%	140%	84%	60%	130%	89%	50%	140%
Ethylbenzene	6385566		<0.10	<0.10	NA	< 0.10	106%	50%	140%	81%	60%	130%	94%	50%	140%
m & p-Xylene	6385566		<0.20	<0.20	NA	< 0.20	108%	50%	140%	86%	60%	130%	100%	50%	140%
Bromoform	6385566		<0.10	<0.10	NA	< 0.10	106%	50%	140%	92%	60%	130%	100%	50%	140%
Styrene	6385566		<0.10	<0.10	NA	< 0.10	113%	50%	140%	88%	60%	130%	104%	50%	140%
1,1,2,2-Tetrachloroethane	6385566		<0.10	<0.10	NA	< 0.10	103%	50%	140%	76%	60%	130%	102%	50%	140%
o-Xylene	6385566		<0.10	<0.10	NA	< 0.10	114%	50%	140%	91%	60%	130%	102%	50%	140%
1,3-Dichlorobenzene	6385566		<0.10	<0.10	NA	< 0.10	114%	50%	140%	99%	60%	130%	104%	50%	140%
1,4-Dichlorobenzene	6385566		<0.10	<0.10	NA	< 0.10	118%	50%	140%	98%	60%	130%	99%	50%	140%
1,2-Dichlorobenzene	6385566		<0.10	<0.10	NA	< 0.10	117%	50%	140%	97%	60%	130%	96%	50%	140%
n-Hexane	6385566		<0.20	<0.20	NA	< 0.20	69%	50%	140%	69%	60%	130%	90%	50%	140%
O. Reg. 153(511) - PCBs (Wate	er)														
Polychlorinated Biphenyls	6367519		< 0.1	< 0.1	NA	< 0.1	98%	50%	140%	93%	50%	140%	83%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

NPoprukoli

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141
SAMPLING SITE:Main St E & Prince St, Milton

AGAT WORK ORDER: 24T229382
ATTENTION TO: Geena Gilmour

SAMPLED BY:GG / BS

CAMILLED BY CONTESTION OF MINIOR														
			Wate	er Ar	nalys	is								
RPT Date: Dec 12, 2024		[DUPLICATI	PLICATE		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	1 1 1	ptable nits
	ld ld	"				Value Lower Upper		,	Lower	Upper		Lower	Upper	
O. Reg. 153(511) - Metals & I	norganics (Water)													
Dissolved Antimony	6392024	<1.0	<1.0	NA	< 1.0	102%	70%	130%	101%	80%	120%	101%	70%	130%
Dissolved Arsenic	6392024	1.4	1.5	NA	< 1.0	100%	70%	130%	106%	80%	120%	106%	70%	130%
Dissolved Barium	6392024	257	256	0.4%	< 2.0	101%	70%	130%	98%	80%	120%	102%	70%	130%
Dissolved Beryllium	6392024	< 0.50	< 0.50	NA	< 0.50	103%	70%	130%	106%	80%	120%	104%	70%	130%
Dissolved Boron	6392024	135	133	1.5%	< 10.0	101%	70%	130%	101%	80%	120%	103%	70%	130%
Dissolved Cadmium	6392024	<0.20	<0.20	NA	< 0.20	100%	70%	130%	99%	80%	120%	99%	70%	130%
Dissolved Chromium	6392024	<2.0	<2.0	NA	< 2.0	98%	70%	130%	102%	80%	120%	98%	70%	130%
Dissolved Cobalt	6392024	< 0.50	< 0.50	NA	< 0.50	97%	70%	130%	107%	80%	120%	98%	70%	130%
Dissolved Copper	6392024	<1.0	<1.0	NA	< 1.0	100%	70%	130%	99%	80%	120%	97%	70%	130%
Dissolved Lead	6392024	<0.50	<0.50	NA	< 0.50	96%	70%	130%	94%	80%	120%	92%	70%	130%
Dissolved Molybdenum	6392024	11.7	12.9	9.8%	< 0.50	101%	70%	130%	106%	80%	120%	104%	70%	130%
Dissolved Nickel	6392024	1.5	<1.0	NA	< 1.0	97%	70%	130%	107%	80%	120%	98%	70%	130%
Dissolved Selenium	6392024	1.3	<1.0	NA	< 1.0	97%	70%	130%	102%	80%	120%	101%	70%	130%
Dissolved Silver	6392024	<0.20	< 0.20	NA	< 0.20	95%	70%	130%	103%	80%	120%	95%	70%	130%
Dissolved Thallium	6392024	<0.30	<0.30	NA	< 0.30	98%	70%	130%	96%	80%	120%	95%	70%	130%
Dissolved Uranium	6392024	<0.50	<0.50	NA	< 0.50	100%	70%	130%	100%	80%	120%	98%	70%	130%
Dissolved Vanadium	6392024	< 0.40	< 0.40	NA	< 0.40	106%	70%	130%	105%	80%	120%	101%	70%	130%
Dissolved Zinc	6392024	<5.0	<5.0	NA	< 5.0	102%	70%	130%	107%	80%	120%	105%	70%	130%
Mercury	6387211 6387211	< 0.02	< 0.02	NA	< 0.02	99%	70%	130%	98%	80%	120%	98%	70%	130%
Chromium VI	6387211 6387211	<2.000	<2.000	NA	< 2	98%	70%	130%	83%	80%	120%	89%	70%	130%
Cyanide, WAD	6387211 6387211	<2	<2	NA	< 2	100%	70%	130%	106%	80%	120%	106%	70%	130%
Dissolved Sodium	6392024	21400	20900	2.4%	< 50	115%	70%	130%	113%	80%	120%	108%	70%	130%
Chloride	6383768	12500	12300	1.6%	< 100	96%	70%	130%	98%	80%	120%	101%	70%	130%
Electrical Conductivity	6387211 6387211	1400	1400	0.0%	< 2	102%	90%	110%						
pH	6387211 6387211	7.75	7.82	0.9%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Method Summary

SAMPLED BY:GG/BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T229382

PROJECT: 220141

ATTENTION TO: Geena Gilmour

SAMPLING SITE:Main St E & Prince St, Milton

DADAMETED	· 1	LITERATURE REFERENCE	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
2-and 1-methyl Napthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS
Sediment		modified from EPA SW-846 3510 &	N/A
Polychlorinated Biphenyls	ORG-91-5112	modified from EPA SW-846 3510 & 8082A modified from EPA SW-846 3510 &	GC/ECD
Decachlorobiphenyl	ORG-91-5112	8082A	GC/ECD
F1 (C6 to C10)	VOL-91-5010	modified from MOE PHC-E3421	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID
Toluene-d8	VOL-91- 5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID

Method Summary

SAMPLED BY:GG/BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T229382
PROJECT: 220141

ATTENTION TO: Geena Gilmour

SAMPLING SITE: Main St E & Prince St, Milton

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

5835 COOPERS AVENUE http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T229382

PROJECT: 220141		ATTENTION TO: Geena Gilmour							
SAMPLING SITE:Main St E & Prince	ce St, Milton	SAMPLED BY:GG / BS							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS						
		modified from EPA 5030B & EPA							

8260D

Method Summary

SAMPLED BY:GG / BS

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 24T229382
PROJECT: 220141

ATTENTION TO: Geena Gilmour

SAMPLING SITE: Main St E & Prince St, Milton

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	² CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

Potentially Hazardous or High Concentration (Y/N)

Any and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at www.agatlabs.com/terms undesuditions unless otherwise agreed in a current written contractual document

Page ı

으

0

N 00 S

□No

Next Business

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT 401 GRAYS ROAD HAMILTON, ON L8E 2Z3 (905) 318-7440

ATTENTION TO: Bennett Sabourin

PROJECT: 220141

AGAT WORK ORDER: 25T327413

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: Aug 06, 2025

PAGES (INCLUDING COVER): 16
VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:17 Prince St., Milton

Certificate of Analysis

AGAT WORK ORDER: 25T327413

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS / SB

O. Reg. 153(511) - PAHs (Water)

DATE RECEIVED: 2025-07-30					DATE REPORTED: 2025-08-
	S	SAMPLE DES	CRIPTION: PLE TYPE:	MW13 S1 Water	
		_	SAMPLED:	2025-07-30	
Parameter	Unit	G/S	RDL	6931884	
laphthalene	μg/L	6400	0.20	<0.20	
Acenaphthylene	μg/L	1.8	0.20	<0.20	
Acenaphthene	μg/L	1700	0.20	<0.20	
Fluorene	μg/L	400	0.20	<0.20	
Phenanthrene	μg/L	580	0.10	<0.10	
Anthracene	μg/L	2.4	0.10	<0.10	
Fluoranthene	μg/L	130	0.20	<0.20	
yrene	μg/L	68	0.20	<0.20	
Senzo(a)anthracene	μg/L	4.7	0.20	<0.20	
Chrysene	μg/L	1	0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.75	0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.4	0.10	<0.10	
Benzo(a)pyrene	μg/L	0.81	0.01	<0.01	
ndeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.52	0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	
2-and 1-methyl Napthalene	μg/L	1800	0.20	<0.20	
Sediment				1	
Surrogate	Unit	Acceptab			
Naphthalene-d8	%	50-1		83	
Acridine-d9	%	50-1		78	
Terphenyl-d14	%	50-1	40	91	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6931884

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters

that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 25T327413

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS / SB

O. Reg. 153(511) - PCBs (Water)

DATE RECEIVED: 2025-07-30 DATE REPORTED: 2025-08-06

		SAMPLE DES	CRIPTION:	MW13 S1
		SAM	PLE TYPE:	Water
		DATE	SAMPLED:	2025-07-30
Parameter	Unit	G/S	RDL	6931884
Polychlorinated Biphenyls	μg/L	15	0.1	<0.1
Surrogate	Unit	Acceptab	le Limits	
Decachlorobiphenyl	%	60-	140	103

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6931884 PCB total is a calculated parameter. The calculated value is the sum of Aroclor 1242, Aroclor 1248, Aroclor 1254 and Aroclor 1260.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:17 Prince St., Milton

AGAT WORK ORDER: 25T327413

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:17 Prince St., Milton

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS / SB

			O. Reg.	153(511)	- PHCs F1 - F4 (with PAHs) (Water)
DATE RECEIVED: 2025-07-30					DATE REPORTED: 2025-08-06
	SA	AMPLE DESCRI SAMPLE DATE SAM	TYPE:	MW13 S1 Water 2025-07-30	
Parameter	Unit	G/S	RDL	6931884	
Benzene	μg/L	430	0.20	<0.20	
Toluene	μg/L	18000	0.20	<0.20	
Ethylbenzene	μg/L	2300	0.10	<0.10	
m & p-Xylene	μg/L		0.20	<0.20	
o-Xylene	μg/L		0.10	<0.10	
Xylenes (Total)	μg/L	4200	0.20	<0.20	
F1 (C6 to C10)	μg/L	750	25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	
F2 (C10 to C16)	μg/L	150	100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	
F3 (C16 to C34)	μg/L	500	100	<100	
F3 (C16 to C34) minus PAHs	μg/L		100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	
Sediment				3	
Surrogate	Unit	Acceptable L	_imits		
Toluene-d8	% Recovery	60-140		64	
Terphenyl	% Recovery	60-140		82	

AGAT WORK ORDER: 25T327413

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

SAMPLING SITE:17 Prince St., Milton

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS / SB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Water)

DATE RECEIVED: 2025-07-30 DATE REPORTED: 2025-08-06

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6931884

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Legend: 1 = no sediment present; 2 = sediment present; 3 = sediment present in trace amount

The C6-C10 fraction is calculated using toluene response factor.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPoprukolef

AGAT WORK ORDER: 25T327413

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin

SAMPLED BY:BS/SB

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT SAMPLING SITE:17 Prince St., Milton

	O. Reg.	153	(511)	- VOCs	(Water)
--	---------	-----	-------	--------	---------

DATE RECEIVED: 2025-07-30				
		SAMPLE DESC	RIPTION:	MW13 S1A
		SAMP	LE TYPE:	Water
			AMPLED:	2025-07-30
Parameter	Unit	G/S	RDL	6931886
Dichlorodifluoromethane	μg/L	4400	0.40	<0.40
Vinyl Chloride	μg/L	1.7	0.17	<0.17
Bromomethane	μg/L	56	0.20	<0.20
Trichlorofluoromethane	μg/L	2500	0.40	<0.40
Acetone	μg/L	130000	1.0	<1.0
1,1-Dichloroethylene	μg/L	17	0.30	< 0.30
Methylene Chloride	μg/L	5500	0.30	< 0.30
trans- 1,2-Dichloroethylene	μg/L	17	0.20	<0.20
Methyl tert-butyl ether	μg/L	1400	0.20	<0.20
1,1-Dichloroethane	μg/L	3100	0.30	< 0.30
Methyl Ethyl Ketone	μg/L	1500000	1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	17	0.20	<0.20
Chloroform	μg/L	22	0.20	<0.20
1,2-Dichloroethane	μg/L	12	0.20	<0.20
1,1,1-Trichloroethane	μg/L	6700	0.30	< 0.30
Carbon Tetrachloride	μg/L	8.4	0.20	<0.20
Benzene	μg/L	430	0.20	<0.20
1,2-Dichloropropane	μg/L	140	0.20	<0.20
Trichloroethylene	μg/L	17	0.20	<0.20
Bromodichloromethane	μg/L	85000	0.20	<0.20
Methyl Isobutyl Ketone	μg/L	580000	1.0	<1.0
1,1,2-Trichloroethane	μg/L	30	0.20	<0.20
Toluene	μg/L	18000	0.20	<0.20
Dibromochloromethane	μg/L	82000	0.10	<0.10
Ethylene Dibromide	μg/L	0.83	0.10	<0.10
Tetrachloroethylene	μg/L	17	0.20	<0.20
1,1,1,2-Tetrachloroethane	μg/L	28	0.10	<0.10
Chlorobenzene	μg/L	630	0.10	<0.10
Ethylbenzene	μg/L	2300	0.10	<0.10
m & p-Xylene	μg/L		0.20	<0.20

SAMPLING SITE:17 Prince St., Milton

Certificate of Analysis

AGAT WORK ORDER: 25T327413

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS / SB

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2025-07-30 DATE REPORTED: 2025-08-06

	SA	AMPLE DESC	CRIPTION:	MW13 S1A	
		SAME	PLE TYPE:	Water	
		DATE S	SAMPLED:	2025-07-30	
Parameter	Unit	G/S	RDL	6931886	
Bromoform	μg/L	770	0.10	<0.10	
Styrene	μg/L	9100	0.10	<0.10	
1,1,2,2-Tetrachloroethane	μg/L	15	0.10	<0.10	
o-Xylene	μg/L		0.10	<0.10	
1,3-Dichlorobenzene	μg/L	9600	0.10	<0.10	
1,4-Dichlorobenzene	μg/L	67	0.10	<0.10	
1,2-Dichlorobenzene	μg/L	9600	0.10	<0.10	
1,3-Dichloropropene	μg/L	45	0.30	< 0.30	
Xylenes (Total)	μg/L	4200	0.20	<0.20	
n-Hexane	μg/L	520	0.20	<0.20	
Surrogate	Unit	Acceptab	le Limits		
Toluene-d8	% Recovery	50-1	40	82	
4-Bromofluorobenzene	% Recovery	50-1	40	102	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6931886 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:17 Prince St., Milton

Certificate of Analysis

AGAT WORK ORDER: 25T327413

PROJECT: 220141

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

ATTENTION TO: Bennett Sabourin SAMPLED BY:BS / SB

O. Reg. 153(511) - Metals & Inorganics (Water)

				`	inotals a morganics (water)
DATE RECEIVED: 2025-07-30					DATE REPORTED: 2025-08-06
		DATE S	LE TYPE:	MW13 S1 Water 2025-07-30	
Parameter	Unit	G/S	RDL	6931884	
Dissolved Antimony Dissolved Arsenic	μg/L	20000 1900	1.0 1.0	<1.0 2.4	
Dissolved Arsenic Dissolved Barium	μg/L	29000	2.0	83.5	
	μg/L	67	0.50	<0.50	
Dissolved Beryllium Dissolved Boron	μg/L	45000	10.0	131	
Dissolved Boron Dissolved Cadmium	μg/L	2.7	0.20	<0.20	
Dissolved Cadmium Dissolved Chromium	μg/L	810	2.0	<2.0	
Dissolved Chlorhium Dissolved Cobalt	μg/L	66	0.50	3.62	
Dissolved Copper	μg/L μg/L	87	1.0	<1.0	
Dissolved Copper Dissolved Lead	μg/L	25	0.50	<0.50	
Dissolved Lead Dissolved Molybdenum	μg/L	9200	0.50	5.56	
Dissolved Nickel	μg/L	490	1.0	9.2	
Dissolved Nickel	μg/L	63	1.0	<1.0	
Dissolved Silver	μg/L	1.5	0.20	<0.20	
Dissolved Thallium	μg/L	510	0.30	<0.30	
Dissolved Uranium	μg/L	420	0.50	12.7	
Dissolved Vanadium	μg/L	250	0.40	0.46	
Dissolved Zinc	μg/L	1100	5.0	<5.0	
Mercury	μg/L	2.8	0.02	<0.02	
Chromium VI	μg/L	140	2.000	<2.000	
Cyanide, WAD	μg/L	66	2	<2	
Dissolved Sodium	μg/L	2300000	50	84600	
Chloride	μg/L	2300000	100	134000	
Н	pH Units		NA	7.61	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to ON T3 NPGW MFT

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

6931884 Metals analysis completed on a filtered sample.

pH is a recommended field analysis taken within 15 minutes of sample collection. Due to the potential for rapid change in sample equilibrium chemistry laboratory results may differ from field measured

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 25T327413

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141 **ATTENTION TO: Bennett Sabourin** SAMPLED BY:BS / SB

SAMPLING SITE:17 Prince St., Milton

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Aug 06, 2025				DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Acceptable Limits		Recovery	Lie	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - I	F4 (with PAHs)	(Water)													
Benzene	6928206		<0.20	<0.20	NA	< 0.20	91%	60%	140%	95%	60%	140%	105%	60%	140%
Toluene	6928206		<0.20	<0.20	NA	< 0.20	79%	60%	140%	83%	60%	140%	64%	60%	140%
Ethylbenzene	6928206		<0.10	<0.10	NA	< 0.10	69%	60%	140%	77%	60%	140%	61%	60%	140%
m & p-Xylene	6928206		<0.20	<0.20	NA	< 0.20	82%	60%	140%	88%	60%	140%	86%	60%	140%
o-Xylene	6928206		<0.10	<0.10	NA	< 0.10	80%	60%	140%	88%	60%	140%	69%	60%	140%
F1 (C6 to C10)	6928206		<25	<25	NA	< 25	94%	60%	140%	90%	60%	140%	86%	60%	140%
F2 (C10 to C16)	6927801		< 100	< 100	NA	< 100	97%	60%	140%	88%	60%	140%	80%	60%	140%
F3 (C16 to C34)	6927801		< 100	< 100	NA	< 100	110%	60%	140%	91%	60%	140%	79%	60%	140%
F4 (C34 to C50)	6927801		< 100	< 100	NA	< 100	84%	60%	140%	110%	60%	140%	85%	60%	140%
O. Reg. 153(511) - PAHs (Wate	er)														
Naphthalene	6931367		<0.20	<0.20	NA	< 0.20	90%	50%	140%	81%	50%	140%	73%	50%	140%
Acenaphthylene	6931367		<0.20	<0.20	NA	< 0.20	99%	50%	140%	84%	50%	140%	100%	50%	140%
Acenaphthene	6931367		<0.20	<0.20	NA	< 0.20	99%	50%	140%	84%	50%	140%	73%	50%	140%
Fluorene	6931367		<0.20	<0.20	NA	< 0.20	94%	50%	140%	81%	50%	140%	75%	50%	140%
Phenanthrene	6931367		<0.10	<0.10	NA	< 0.10	81%	50%	140%	104%	50%	140%	85%	50%	140%
Anthracene	6931367		<0.10	<0.10	NA	< 0.10	115%	50%	140%	108%	50%	140%	80%	50%	140%
Fluoranthene	6931367		<0.20	<0.20	NA	< 0.20	118%	50%	140%	100%	50%	140%	111%	50%	140%
Pyrene	6931367		<0.20	< 0.20	NA	< 0.20	101%	50%	140%	87%	50%	140%	75%	50%	140%
Benzo(a)anthracene	6931367		<0.20	< 0.20	NA	< 0.20	74%	50%	140%	86%	50%	140%	83%	50%	140%
Chrysene	6931367		<0.10	<0.10	NA	< 0.10	114%	50%	140%	109%	50%	140%	101%	50%	140%
Benzo(b)fluoranthene	6931367		<0.10	<0.10	NA	< 0.10	95%	50%	140%	89%	50%	140%	111%	50%	140%
Benzo(k)fluoranthene	6931367		0.11	<0.10	NA	< 0.10	126%	50%	140%	108%	50%	140%	102%	50%	140%
Benzo(a)pyrene	6931367		< 0.01	< 0.01	NA	< 0.01	99%	50%	140%	79%	50%	140%	96%	50%	140%
Indeno(1,2,3-cd)pyrene	6931367		<0.20	< 0.20	NA	< 0.20	97%	50%	140%	86%	50%	140%	72%	50%	140%
Dibenz(a,h)anthracene	6931367		<0.20	<0.20	NA	< 0.20	83%	50%	140%	83%	50%	140%	70%	50%	140%
Benzo(g,h,i)perylene	6931367		<0.20	<0.20	NA	< 0.20	89%	50%	140%	80%	50%	140%	83%	50%	140%
O. Reg. 153(511) - PCBs (Wate	er)														
Polychlorinated Biphenyls	6913126		< 0.2	< 0.2	NA	< 0.1	102%	60%	140%	99%	60%	140%	108%	60%	140%
Comments: When the average o	f the sample and	duplicate	results is	less than 5	x the RDI	_, the Rela	tive Perce	nt Diffe	rence (F	RPD) will b	oe indic	ated as	Not Appli	cable (1	NA).
O. Reg. 153(511) - VOCs (Wat	er)														
Dichlorodifluoromethane	6821664		< 0.40	< 0.40	NA	< 0.40	98%	60%	140%	95%	50%	140%	74%	50%	140%
Vinyl Chloride	6821664		< 0.17	< 0.17	NA	< 0.17	87%	60%	140%	85%	50%	140%	93%	50%	140%
Bromomethane	6821664		< 0.20	< 0.20	NA	< 0.20	85%	60%	140%	86%	50%	140%	92%	50%	140%
Trichlorofluoromethane	6821664		< 0.40	< 0.40	NA	< 0.40	95%	60%	140%	98%	50%	140%	98%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

6821664

1682166

6821664

< 1.0

< 0.30

< 0.30

< 1.0

< 0.30

< 0.30

Acetone

1,1-Dichloroethylene

Methylene Chloride

50% 140% Page 9 of 16

50% 140%

140%

50%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

NA

NA

NA

90%

95%

98%

< 1.0

< 0.30

< 0.30

60%

140%

60% 140%

60% 140%

105%

102%

92%

50%

50%

140%

140%

50% 140%

89%

90%

86%

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 25T327413

PROJECT: 220141 ATTENTION TO: Bennett Sabourin

SAMPLING SITE:17 Prince St., Milton SAMPLED BY:BS / SB

	7	Trace	Org	anics	Ana	lysis	(Coı	ntin	uec	l)					
RPT Date: Aug 06, 2025			Г	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery		ptable nits	Recovery		ptable nits
		ld	.,				Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
trans- 1,2-Dichloroethylene	6821664		< 0.20	< 0.20	NA	< 0.20	89%	60%	140%	96%	50%	140%	90%	50%	140%
Methyl tert-butyl ether	6821664		< 0.20	< 0.20	NA	< 0.20	85%	60%	140%	95%	50%	140%	98%	50%	140%
1,1-Dichloroethane	6821664		< 0.30	< 0.30	NA	< 0.30	93%	60%	140%	97%	50%	140%	74%	50%	140%
Methyl Ethyl Ketone	6821664		< 1.0	< 1.0	NA	< 1.0	92%	60%	140%	98%	50%	140%	75%	50%	140%
cis- 1,2-Dichloroethylene	6821664		< 0.20	< 0.20	NA	< 0.20	98%	60%	140%	95%	50%	140%	76%	50%	140%
Chloroform	6821664		< 0.20	< 0.20	NA	< 0.20	89%	60%	140%	104%	50%	140%	95%	50%	140%
1,2-Dichloroethane	6821664		< 0.20	< 0.20	NA	< 0.20	85%	60%	140%	98%	50%	140%	90%	50%	140%
1,1,1-Trichloroethane	6821664		< 0.30	< 0.30	NA	< 0.30	78%	60%	140%	78%	50%	140%	87%	50%	140%
Carbon Tetrachloride	6821664		< 0.20	< 0.20	NA	< 0.20	74%	60%	140%	85%	50%	140%	105%	50%	140%
Benzene	6821664		< 0.20	< 0.20	NA	< 0.20	75%	60%	140%	83%	50%	140%	98%	50%	140%
1,2-Dichloropropane	6821664		< 0.20	< 0.20	NA	< 0.20	86%	60%	140%	92%	50%	140%	89%	50%	140%
Trichloroethylene	6821664		< 0.20	< 0.20	NA	< 0.20	90%	60%	140%	96%	50%	140%	86%	50%	140%
Bromodichloromethane	6821664		< 0.20	< 0.20	NA	< 0.20	98%	60%	140%	95%	50%	140%	83%	50%	140%
Methyl Isobutyl Ketone	6821664		< 1.0	< 1.0	NA	< 1.0	77%	60%	140%	78%	50%	140%	95%	50%	140%
1,1,2-Trichloroethane	6821664		< 0.20	< 0.20	NA	< 0.20	98%	60%	140%	105%	50%	140%	98%	50%	140%
Toluene	6821664		< 0.20	< 0.20	NA	< 0.20	89%	60%	140%	98%	50%	140%	78%	50%	140%
Dibromochloromethane	6821664		< 0.10	< 0.10	NA	< 0.10	90%	60%	140%	86%	50%	140%	105%	50%	140%
Ethylene Dibromide	6821664		< 0.10	< 0.10	NA	< 0.10	98%	60%	140%	88%	50%	140%	98%	50%	140%
Tetrachloroethylene	6821664		< 0.20	< 0.20	NA	< 0.20	78%	60%	140%	85%	50%	140%	83%	50%	140%
1,1,1,2-Tetrachloroethane	6821664		< 0.10	< 0.10	NA	< 0.10	85%	60%	140%	90%	50%	140%	92%	50%	140%
Chlorobenzene	6821664		< 0.10	< 0.10	NA	< 0.10	90%	60%	140%	98%	50%	140%	96%	50%	140%
Ethylbenzene	6821664		< 0.10	< 0.10	NA	< 0.10	105%	60%	140%	105%	50%	140%	95%	50%	140%
m & p-Xylene	6821664		< 0.20	< 0.20	NA	< 0.20	98%	60%	140%	98%	50%	140%	98%	50%	140%
Bromoform	6821664		< 0.10	< 0.10	NA	< 0.10	89%	60%	140%	89%	50%	140%	78%	50%	140%
Styrene	6821664		< 0.10	< 0.10	NA	< 0.10	85%	60%	140%	85%	50%	140%	74%	50%	140%
1,1,2,2-Tetrachloroethane	6821664		< 0.10	< 0.10	NA	< 0.10	93%	60%	140%	86%	50%	140%	105%	50%	140%
o-Xylene	6821664		< 0.10	< 0.10	NA	< 0.10	95%	60%	140%	90%	50%	140%	98%	50%	140%
1,3-Dichlorobenzene	6821664		< 0.10	< 0.10	NA	< 0.10	98%	60%	140%	98%	50%	140%	77%	50%	140%
1,4-Dichlorobenzene	6821664		< 0.10	< 0.10	NA	< 0.10	89%	60%	140%	88%	50%	140%	75%	50%	140%
1,2-Dichlorobenzene	6821664		< 0.10	< 0.10	NA	< 0.10	85%	60%	140%	74%	50%	140%	90%	50%	140%
1,3-Dichloropropene	6821664		< 0.30	< 0.30	NA	< 0.30	98%	60%	140%	98%	50%	140%	90%	50%	140%
n-Hexane	6821664		< 0.20	< 0.20	NA	< 0.20	90%	60%	140%	85%	50%	140%	89%	50%	140%

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 16

Quality Assurance

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

AGAT WORK ORDER: 25T327413

PROJECT: 220141 ATTENTION TO: Bennett Sabourin
SAMPLING SITE:17 Prince St., Milton SAMPLED BY:BS / SB

SAMPLING SITE. IT FITTIC	e St., Militori					•	SAIVIE	LED B	1.63/3	, D				
			Wate	er Ar	nalys	is								
RPT Date: Aug 06, 2025			DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE	
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lie	ptable nits	Recovery	1 11	ptable nits
	ld ld	"				Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Ir	norganics (Water)													
Dissolved Antimony	6931959	<1.0	<1.0	NA	< 1.0	102%	70%	130%	104%	80%	120%	98%	70%	130%
Dissolved Arsenic	6931959	2.2	2.0	NA	< 1.0	99%	70%	130%	102%	80%	120%	105%	70%	130%
Dissolved Barium	6931959	26.9	27.4	1.8%	< 2.0	98%	70%	130%	100%	80%	120%	94%	70%	130%
Dissolved Beryllium	6931959	< 0.50	< 0.50	NA	< 0.50	105%	70%	130%	110%	80%	120%	107%	70%	130%
Dissolved Boron	6931959	631	624	1.1%	< 10.0	104%	70%	130%	107%	80%	120%	107%	70%	130%
Dissolved Cadmium	6931959	<0.20	<0.20	NA	< 0.20	100%	70%	130%	100%	80%	120%	103%	70%	130%
Dissolved Chromium	6931959	<2.0	<2.0	NA	< 2.0	105%	70%	130%	107%	80%	120%	103%	70%	130%
Dissolved Cobalt	6931959	0.70	0.84	NA	< 0.50	105%	70%	130%	105%	80%	120%	100%	70%	130%
Dissolved Copper	6931959	<1.0	<1.0	NA	< 1.0	104%	70%	130%	102%	80%	120%	99%	70%	130%
Dissolved Lead	6931959	<0.50	<0.50	NA	< 0.50	101%	70%	130%	101%	80%	120%	100%	70%	130%
Dissolved Molybdenum	6931959	26.0	26.1	0.4%	< 0.50	95%	70%	130%	99%	80%	120%	101%	70%	130%
Dissolved Nickel	6931959	5.9	5.5	7.0%	< 1.0	106%	70%	130%	105%	80%	120%	101%	70%	130%
Dissolved Selenium	6931959	<1.0	<1.0	NA	< 1.0	93%	70%	130%	100%	80%	120%	101%	70%	130%
Dissolved Silver	6931959	<0.20	<0.20	NA	< 0.20	97%	70%	130%	96%	80%	120%	89%	70%	130%
Dissolved Thallium	6931959	<0.30	<0.30	NA	< 0.30	99%	70%	130%	100%	80%	120%	100%	70%	130%
Dissolved Uranium	6931959	1.21	1.18	NA	< 0.50	102%	70%	130%	104%	80%	120%	104%	70%	130%
Dissolved Vanadium	6931959	0.61	0.41	NA	< 0.40	103%	70%	130%	106%	80%	120%	103%	70%	130%
Dissolved Zinc	6931959	<5.0	<5.0	NA	< 5.0	104%	70%	130%	106%	80%	120%	105%	70%	130%
Mercury	6931884 6931884	< 0.02	< 0.02	NA	< 0.02	101%	70%	130%	103%	80%	120%	93%	70%	130%
Chromium VI	6932093	<2.000	<2.000	NA	< 2	101%	70%	130%	97%	80%	120%	97%	70%	130%
Cyanide, WAD	6931959	<2	<2	NA	< 2	92%	70%	130%	99%	80%	120%	76%	70%	130%
Dissolved Sodium	6931959	52500	54900	4.5%	< 50	93%	70%	130%	100%	80%	120%	96%	70%	130%
Chloride	6929978	21000	21200	0.9%	< 100	95%	70%	130%	100%	80%	120%	97%	70%	130%
pH	6930477	6.77	6.82	0.7%	NA	100%	90%	110%						

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Yris Verástegui

5835 COOPERS AVENUE

Method Summary

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT PROJECT: 220141

AGAT S.O.P

ORG-91-5105

SAMPLING SITE:17 Prince St., Milton **PARAMETER**

Trace Organics Analysis

Naphthalene

AGAT WORK ORDER: 25T327413 ATTENTION TO: Bennett Sabourin SAMPLED BY:BS / SB LITERATURE REFERENCE **ANALYTICAL TECHNIQUE** modified from EPA 3510C and EPA GC/MS GC/MS GC/MS

FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100

Method Summary

SAMPLED BY:BS / SB

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 25T327413 PROJECT: 220141 **ATTENTION TO: Bennett Sabourin**

SAMPLING SITE:17 Prince St., Milton

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

5835 COOPERS AVENUE http://www.agatlabs.com

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122

Method Summary

SAMPLED BY:BS / SB

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT AGAT WORK ORDER: 25T327413 PROJECT: 220141 **ATTENTION TO: Bennett Sabourin**

SAMPLING SITE:17 Prince St., Milton

SAMI LING SITE. IT I TINCE St., MIN	.011	SAMI LED BI.D.	0 / OB
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

SAMPLED BY:BS / SB

CLIENT NAME: SOIL MAT ENGINEERS & CONSULTANTS LT

PROJECT: 220141

AGAT WORK ORDER: 25T327413

ATTENTION TO: Bennett Sabourin

SAMPLING SITE:17 Prince St., Milton

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	1		
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 3112 B	CVAAS
Chromium VI	INOR-93-6073	modified from SM 3500-CR B	LACHAT FIA
Cyanide, WAD	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	SEGMENTED FLOW ANALYSIS
Dissolved Sodium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP/MS
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
pH	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

FIGAT Laboratories

Chain of Custody Record

Have feedback?

Scan here for a quick survey!

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 .712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only

Cooler Quantity:	for	-						
Arrival Temperatures:	7.3	17-910	90					
Depot Temperatures:								
Custody Seal Intact:	□Yes	□No	DATA					

Turna	round Tim	e (TAT) Requir	ed:
Regula	ar TAT	5 to 7 Busine	ss Days
Rush 1	AT (Rush Surchar	ges Apply)	
	3 Business Days	2 Business Days	Next Busines Day
	OR Date Requ	ired (Rush Surcharg	es May Apply):

Report Information: Company: Contact: Saturat Bennett Saboria		Reg	Regulatory Requirements:							Custody Seal Intact: Yes Notes:												
	Grays Rd,	Hami Ita	9.4	_ Ta	ble Indicate One	Regulation 406		Sew	ver Use anitary Region	_:	Storm		111		rour ar TA			FAT) R		red: ess Day	'S	
Phone: Reports to be sent to: 1. Email: 2. Email: DSJ bount 1 @ So. p mar kes ic 6 So.	Fax: I mut, esi Di lmut.cu	31 sbi	indley	Soil T	Res/Park Agriculture exture (Check One) Coarse Fine	Res/Park Agriculture Regulation 558		Prov Obje	ectives	(PWC			Rı	ush 1	3 Bus Days	iness ate Rec		2 Bus Days	siness urcharg	☐ ges May	Next Bus Day / Apply):	iness
Project Information: Project: 270/4/ Site Location: 17 Pronce St, Millan Sampled By: B\$/\$B AGAT Quote #: PO:			☐ Yes ☐ No		Cer	Report Guideline on Certificate of Analysis Yes No					Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CSR 0. Reg 406 0. Reg 558											
Invoice Information: Company: Contact: Address: Email:		ill To Same: Yo		San GW O P S	nple Matrix Loground Water Siloil Stant R	D Sediment W Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	. □ crvl, □ Hg, □ HWSB	F1-F4 PHCs		roclors 🗆	Regulation 406 Characterization Package	ń	Regulation 406 SPLP Rainwater Leach	Characteri	□ Moisture □					ly Hazardous or High Concentration
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		ments/ nstructions	Y/N	Metals	Metals - Í		VOC	PCBs: Aroclors	Regulatio	EC, SAR	Regulat	Landfill True	Corrosivity:					Potentia
1. Mw/3 Si	744 301	2025 AN	15	6W				V		1	1	10										
2 MWB SIA	T.	AN PN	3	1							/			H								
3.	PLEAT I	AN PN					ni				- 2	8										
4.	diam'r.	AN PN		Halb.		100							MA.							J.		-41
5.		AN PN					ul I	20											-			
6.		AN PN													- 7							
7.		AN PN																	in all			
8.		AN PN				L-LILX								T								
9		AN PN																				
10.	7/2-8	AN PN			N HILL			Y D					100									
11,		AN PN							=													
Samples Relinquished By (Print Name and Sign) Samples Relinquished By (Print Name and Sign):		Date	Time		Samples Received By (Processed Burre	Tot Name and Sumi				(7			4p		Pa	ge	of		
Samples Relinquished By /Print Name and Sign		Date.	Tinte		Samples Received By (Pr	int Name and Sign)	-9-				I	ate		- 1	Time		N In	т	1	77	A 70	

Appendix 'D'

1. Qualifications of Assessors

COMPANY BACKGROUND

Soil-Mat Engineers & Consultants Ltd. [Soil-Mat Engineers] is a Canadian Consulting Engineering firm owned by its senior staff. Over the past thirty years the principals of Soil-Mat Engineers have undertaken geotechnical investigations in all areas of Hamilton and surrounding area and are familiar with the distinct geology of the area and therefore well-versed with the various soil, bedrock and groundwater conditions. Soil-Mat Engineers has a staff of over twenty-five engineers and technical staff who specialize in geotechnical assignments, environmental assessments, hydrogeological investigations and construction quality control/assurance projects. The company commenced operation on June 15, 1992 and has undertaken over 5,000 projects since its inception. The firm and all professional staff are in good standing with Professional Engineers Ontario. The company has maintained a current Certificate of Authorisation since it was granted on April 28, 1992. The firm's office and laboratory facilities are located at 130 Lancing Drive in Hamilton, Ontario.

REPORT AUTHORS

Peter Markesic, B.Sc.

Project Manager

Mr. Markesic has over seventeen years of experience in conducting Phase I ESA research and Phase II ESA fieldwork, including soil and groundwater sampling. Mr. Markesic has also been a key project member on a number of Phase III Environmental Site Assessment projects, including the decommissioning of underground fuel storage tanks and both in-situ and ex-situ remediation projects.

Stephen R. Sears, B. Eng. Mgmt., P. Eng.

[Director/ Senior Professional]

Mr. Sears has over twenty-five years of experience in the geotechnical and geoenvironmental fields. Mr. Sears holds current Consulting Engineer designations with the Professional Engineers Ontario and the Association of Professional Engineers and Geoscientists of Saskatchewan and has supervised the geotechnical investigations for numerous industrial, commercial and residential development projects in Southern Ontario, slope stability assignments associated with Hamilton Conservation Authority, Conservation Halton and Niagara Peninsula Conservation Authority requirements, and several high rise developments throughout Ontario. Mr. Sears has also been involved in geotechnical and hydrogeological investigations for industrial park developments in the Greater Toronto Area and Niagara Peninsula. Some of Mr. Sears' projects have included the decommissioning and reconstruction of underground and above ground fuel oil storage tanks in Ontario and Saskatchewan, the study of the containment structures at a number of Petroleum Storage Facilities in Ontario and and numerous 'dig and dump' remediation projects.

Keith Gleadall, B.A., EA Dipl.

Vice-President [Senior Professional]

Mr. Gleadall has over twenty years of experience in conducting Phase I, II and III Environmental Site Assessments and has successfully completed the requirements of the Associated Environmental Site Assessors of Canada and a Post Graduate Diploma in Environmental Site Assessment from Niagara College. Mr. Gleadall is responsible for undertaking numerous hydrogeological investigations, primarily within the City of Hamilton, associated with the development of residential and commercial subdivision projects, together with Phase I, II and III Environmental Site Assessments. Projects have included the decommissioning of underground and above ground fuel oil storage tanks, the implementation of in-situ and ex-situ remediation programmes, the decommissioning of a former dry cleaning facility and numerous 'dig and dump' remediation projects.

Appendix 'E'

1. Statement of Limitations

REPORT LIMITATIONS

Achieving the objectives that are stated in this report has required SOIL-MAT ENGINEERS to derive conclusions based upon the best and most recent information currently available to SOIL-MAT ENGINEERS. No investigative method can completely eliminate the possibility of obtaining partially imprecise information. SOIL-MAT ENGINEERS has expressed professional judgement in gathering and analysing the information obtained and in the formulation of its conclusions.

Information in this report was obtained from sources deemed to be reliable, however, no representation or warranty is made as to the accuracy of this information. To the best of SOIL-MAT ENGINEERS' knowledge, the information gathered from outside sources contained in this report on which SOIL-MAT ENGINEERS has formulated its opinions and conclusions, are both true and correct. SOIL-MAT ENGINEERS assumes no responsibility for any misrepresentation of facts gathered from outside sources.

This report was prepared to assess and document evidence of potential environmental contamination, and not to judge the acceptability of the risks associated with such environmental contamination. Much of the information gathered for this report is only accurate at the time of collection and a change in the Site conditions may alter the interpretation of SOIL-MAT ENGINEERS' findings. Furthermore, the reader should note that the Site reconnaissance described in this report was an environmental assessment of the Site, not a regulatory compliance or an environmental audit of the Site.

SOIL-MAT ENGINEERS & CONSULTANTS LTD. prepared this Report for the account of MIKMADA HOMES. The material in it reflects SOIL-MAT ENGINEERS best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. SOIL-MAT ENGINEERS accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report.