FEBRUARY 27, 2017

REFER TO FILE: 1286-4485

SENT BY EMAIL:

NBOUTIN@VALOURCAPITAL.COM

Pine-Ontario Development Ltd. 3410 South Service Road, Suite G5 Burlington, ON L7N 3T2

Attention: Nicole Boutin

President

RE: TRAFFIC OPINION LETTER

70 PINE STREET TOWN OF MILTON

Dear Nicole,

Pursuant to your request for a transportation analysis regarding the proposed residential development located at 70 Pine Street, in the Town of Milton, this Traffic Opinion Letter (TOL) has been composed to support the Zoning By-Law Amendment and Site Plan Applications.

This letter reviews the development plan from a transportation engineering perspective. The main aspects reviewed in this letter are:

- The existing traffic operations at the study intersection of Pine Street at Ontario Street South during the weekday p.m. and Saturday peak hours.
- The trips generated by the proposed development.
- Queuing analysis using Simtraffic to review if the proposed site access is consistently blocked by queued vehicles from the intersection of Pine Street at Ontario Street South.
- The traffic operations at the study intersection when considering site generated traffic and background developments for a five year study horizon to 2022.
- Safety at the site access.

Correspondence between Nawfal Kammah (Crozier & Associates) and Michael Turco (Town of Milton) confirmed the scope of work used in this Traffic Opinion Letter and has been included in the attachments.

1.0 PROJECT PROPOSAL

Due to the skewed directions, Pine Street has been given an east-west alignment and Ontario Street South has been given a north-south alignment, to help provide clarity throughout the letter.

The subject property (70 Pine Street) is located on the south side of Pine Street, in the south-west corner of the Pine Street at Ontario Street South intersection, in the Town of Milton. The subject lands are categorized as a "Low Density Residential- RLD" zone by the Town of Milton Zoning By-Law 016-2014.

The subject lands currently contain a single-family detached house. The subject lands are bounded by Ontario Street South to the east, Pine Street to the north and residential development to the south and west. The site location and surrounding area are illustrated in **Figure 1.**

The project proposal is for a three-storey apartment building with a total of 19 dwelling units. A total of 30 parking spaces are proposed on-site, including 25 resident parking spaces and five visitor parking spaces. Two barrier-free parking are included. The proposed development has a full-moves access to Pine Street. Refer to **Figure 2** for the Site Plan Exterior Elevations prepared by GB Architect Inc. dated January, 2017.

2.0 EXISTING CONDITIONS

2.1 Boundary Road Network

Pine Street is an east-west roadway with a two-lane cross-section, one lane in each direction. Pine Street is under the jurisdiction of the Town of Milton and is defined as a collector per the Town of Milton Official Plan Schedule F, with a posted speed limit of 40 km/h at the site frontage. Concrete sidewalks are located on both sides of the roadway, separated from the roadway by a boulevard strip.

Ontario Street South is a north-south roadway with a four-lane cross-section, two lanes in each direction. Ontario Street South is under the jurisdiction of the Town of Milton and is defined as a multi-purpose arterial per the Town of Milton Official Plan Schedule F, with a posted speed limit of 50 km/h at the site frontage. Concrete sidewalks are located on both sides of the roadway, separated from the roadway by a boulevard strip.

The four-legged intersection of Pine Street at Ontario Street South is signalized. The northbound and southbound approaches (Ontario Street South) both consist of an exclusive left-turn lane, one through lane and a shared through/right-turn lane. The eastbound approach (Pine Street) consists of an exclusive left-turn lane and a shared through/right-turn lane. The westbound approach (Shopping Centre access) consists of an exclusive left-turn lane and a shared through/right-turn lane.

2.3 Cycling Facilities

There are currently no cycling facilities at the site frontage. However, the Town of Milton Trails and Cycling MasterPlan Update Map 3.2 proposes a Mutli-Use Trail along Ontario Street South and an On-Route Signed Route along Pine Street. Relevant maps are attached to this letter.

2.4 Public Transit

Multiple Milton Transit Bus routes service the immediate surroundings of the site. Routes 1A and 1B – Industrial, Route 2 – Main, Route 5 – Yates, Route 6 – Scott and Route 8 – Willmott all have a stop near the intersection of Main Street at Ontario Street, located approximately 180 metres north of the site along Ontario Street South. Relevant maps are attached to this letter.

2.5 Traffic Data

Turning movement counts at the intersection of Pine Street at Ontario Street South were surveyed by Ontario Traffic Inc. on Tuesday December 13th, 2016, between 4 p.m. and 7 p.m., and on Saturday December 10th, 2016, between 10 a.m. and 3 p.m. The peak hours of the turning movement counts occurred between 4:30 p.m. and 5:30 p.m. on Tuesday December 13th, and between 12 p.m. and 13 p.m. on Saturday December 10th. Summary of the turning movement counts have been attached to this letter.

2.6 Traffic Modelling

The assessment of intersections is based on the method outlined in the "Highway Capacity Manual, 2010" using Synchro 8 modeling software. Intersections are assessed using a Level of Service metric, with ranges of delay assigned a letter from "A" to "F". For stop-controlled intersections, a Level of Service "A" or "B" would typically be measured during off-peak hours when lesser traffic volumes are on the roadways. Levels of Service "C" through "F" would typically be measured in the commuter peak hours when greater vehicle volumes cause longer travel times. The Level of Service (LOS) definitions for signalized intersections are attached.

2.7 Intersection Operations

The 2016 existing traffic operations at the intersection of Pine Street at Ontario Street South were analyzed on the basis of the traffic volumes recorded. Detailed capacity analyses are attached to this Traffic Opinion Letter. Signal timing plans for the study intersection were provided by the Town of Milton.

The operations of the critical intersection were analyzed on the basis of the traffic volumes illustrated in **Figure 3. Table 1** outlines the existing traffic levels of service.

Table 1: 2016 Existing Levels of Service

Intersection	Control	Peak Hour	Level of Service	Average Delay per Vehicle(s)	Max V/C Ratio (Approach)	V/C Ratio(s) > 0.85 (Approach)	95 th %ile Queues > Storage Length
Pine Street at	Cianal	P.M.	А	8.0	0.41 (SBT/R)	None	None
Ontario Street South	Signal	Saturday	А	9.6	0.47 (WBT/R)	None	23.5 m (EBL) 26.0 m (NBL)

The Level of Service of a signalized intersection is based on the average control delay per vehicle.

95th percentile queue analysis was completed using SimTraffic with 60 minutes recording time, 10 minutes seeding time, and an average of three runs.

Note:

As illustrated in **Table 1**, the intersection of Pine Street at Ontario Street South operates at a Level of Service "A" during the weekday p.m. and Saturday peak hours. The maximum average delay per vehicle is 9.6 seconds during the Saturday peak hour, with a maximum volume-to-capacity ratio of 0.47 for the westbound through/right-turn movement. 95th percentile queue lengths exceed the storage capacity during the Saturday peak hour by 3.5 metres for the eastbound left-turn movement and by one metre for the northbound left-turn movement. Therefore, queue lengths are expected to occasionally extend into the tapers and adjacent through lanes. Significant reserve capacity is available for future traffic volume arowth.

3.0 LOCAL BACKGROUND DEVELOPMENTS

In order to complete a conservative analysis, local background developments were included to assess the full impact of the proposed development on the boundary road network. The various local background developments that impact the intersection of Pine Street at Ontario Street South are detailed below.

3.1 Hallawest Developments

The Hallawest Development project is located on the east side of Ontario Street South, between Centennial Forest Drive and Laurier Avenue. This development consists of 151 townhouse dwelling units. Tables 4.2 and 4.3 of the *Hallawest Developments Traffic Impact Study*, prepared by Paradigm Transportation Solutions Limited (Paradigm) dated November 24th, 2016, were used to assess the impacts of the Hallawest Development on the boundary road network.

According to Table 4.2 of the Paradigm report, a total 79 trips are expected to be generated by the Hallawest Development during the weekday p.m. peak hour, 53 trips entering the site and 26 trips exiting the site. The Paradigm report did not take into consideration a Saturday peak hour. Therefore, using the Institute of Transportation Engineers (ITE) Trip Generation Manual, 9th edition, Land Use Category 230 "Residential Condominium/Townhouse", it was estimated that a total of 71 trips would be generated by the Hallawest Development during the Saturday peak hour with 38 trips entering the site and 33 trips exiting the site. Using the trip distribution outlined in Table 4.3 of the Paradigm report the trips were distributed north of the intersection of Ontario Street South at Parkway Drive East/Centennial Forest Drive.

The impact of the Hallawest Development site generated traffic on the intersection of Ontario Street South at Pine Street is illustrated in **Figure 4**.

3.2 80 Ontario Street North Redevelopment

The proposed redevelopment at 80 Ontario Street North is for an expansion of the existing residential development. The proposed redevelopment consists of the addition of a four-storey residential building containing 83 dwelling units. This proposed building will be connected to the existing nine-storey building by a one-storey atrium. The 80 Ontario Street North Traffic Impact Study, prepared by Paradigm dated August, 2016, was used to assess the impact of the 80 Ontario Street North redevelopment on the boundary road network.

According to Table 3.2 of the Paradigm report, a total of 36 trips are expected to be generated by the 80 Ontario Street North redevelopment during the weekday p.m. peak hour, 26 trips entering the site and 10 trips exiting the site. The Paradigm report did not take into consideration a Saturday peak hour. Therefore, using the ITE Trip Generation Manual, 9th edition, Land Use Category 220 "Apartment", it was estimated

that a total of 44 trips would be generated during the Saturday peak hour with 29 trips entering the site and 15 trips exiting the site (the directional distribution from the ITE's weekday p.m. peak hour generation was used as it is not available for the Saturday peak hour). Using the weekday p.m. trip distribution outlined in Table 3.3 of the Paradigm report the trips were distributed travel along Ontario Street south of Main Street for both study peak hours.

The impact of the 80 Ontario Street North redevelopment site generated traffic on the intersection of Ontario Street South at Pine Street is illustrated in **Figure 5**.

3.3 Lowe's (Milton Mall) Development

The Lowe's development, located within the Milton Mall at 55 Ontario Street, is replacing the previously existing Target store. The Lowe's Development is currently under construction. Based on the *Lowe's of Milton Traffic/Parking Review*, prepared by Dillon Consulting (Dillon) dated February 4th, 2016, the Lowe's development will have a total area of 9,689 square metres (104,290 square feet). This information will be used to assess the impacts of the Lowe's development on the intersection of Ontario Street South at Pine Street.

The Dillon report did not provide information regarding the number of trips generated by the Lowe's development or their assignment to the boundary road network. Therefore, the trips generated by the proposed Lowe's development were calculated using ITE data, and their distribution to the boundary road network was completed using existing conditions and best practices.

It is assumed that the ITE Trip Generation Manual, 9th edition, Land Use Category 820 "Home Improvement Superstore" is adequate to represent the Lowe's development. According to the ITE Trip Generation Manual, the Lowe's development is expected to generate a total of 243 trips during the weekday p.m. peak hour with 119 trips entering the site and 124 trips exiting the site. During the Saturday peak hour it is expected to generate a total of 471 trips with 240 trips entering the site and 231 trips exiting the site. As the Milton Mall entrance via Ontario Street South is one of four and does not allow customers direct access to the Lowe's development, it is assumed that a total of 30% of the trips generated by the Lowe's development will use the Ontario Street South entrance. The directional distribution of said trips within the intersection of Pine Street at Ontario Street South is based on existing traffic patterns.

The impact of the Lowe's development site generated traffic on the intersection of Ontario Street South at Pine Street is illustrated in **Figure 6**.

4.0 SITE GENERATED TRAFFIC AND TRIP DISTRIBUTION

Site generated traffic for the proposed development was calculated using the Institute of Transportation Engineers (ITE) Trip Generation Manual, 9th Edition, Land Use Category 220 "Apartment". **Table 2** below summarizes the total amount of trips generated.

Table 2: Site Generated Trips

Type of Use	Number of Dwellings	Peak Hour	Trips per Dwelling	In (%)	Out (%)	Total
Apartment	19	Weekday P.M.	0.62	8 (65%)	4 (35%)	12
(Category 220)	19	Saturday*	0.52	6 (65%)	4 (35%)	10

*Note: No directional distribution was available for the Saturday Peak Hour Generator. Therefore the weekday p.m. Peak Hour directional distribution was used for the Saturday Peak Hour.

Vehicles entering and exiting the site were distributed based on existing travel patterns at the study intersection. The site trip distribution and trip assignment volumes are illustrated in **Figure 7 and 8**, respectively.

5.0 TOTAL TRAFFIC OPERATIONS

Traffic operations at the intersections of Pine Street at Ontario Street South and Pine Street at the Site Access were assessed under future total traffic conditions. Existing traffic volumes were grown using an industry standard of two percent and a five year study horizon to 2022. The local background development traffic volumes and site generated traffic were then added to the grown traffic volumes to create the future total traffic volumes, illustrated in **Figure 9**. Detailed capacity analyses are attached to this Traffic Opinion Letter. **Table 3** outlines the future total traffic Levels of Service.

Table 3: 2022 Total Traffic Levels of Service

Intersection	Control	Peak Hour	Level of Service	Average Delay per Vehicle(s)	Max V/C Ratio (Approach)	V/C Ratio(s) > 0.85 (Approach)	95 th %ile Queues > Storage Length
Ontario Street South at Pine	Cianal	P.M.	А	9.3	0.49 (NBT/R)	None	22.2 m (EBL) 26.2 m (NBL)
Street	Signal	Saturday	В	11.9	0.59 (WBT/R)	None	22.8 m (EBL) 30.7 m (NBL)
Pine Street at	One-Way	P.M.	A (NB)	9.6	0.01 (NB)	None	None
Site Access	Stop	Saturday	A (NB)	9.7	0.01 (NB)	None	None

Note: The Level of Service of a signalized intersection is based on the average control delay per vehicle. Signal Timing Plans were optimized using the "Optimize Splits" function in Synchro 8.

The Level of Service of a Stop-Controlled intersection is based on the delay associated with the critical minor approach. 95th percentile queue analysis was completed using SimTraffic with 60 minutes recording time, 10 minutes seeding time, and an average of three runs.

As illustrated in **Table 3**, the intersection of Pine Street at Ontario Street South is projected to operate at a Level of Service "A" and "B" during the weekday p.m. and Saturday peak hours, respectively. The maximum average delay per vehicle is projected to be 11.9 seconds during the Saturday peak hour, an increase of 2.3 seconds compared to existing conditions. A maximum volume-to-capacity ratio of 0.59 is projected for the westbound through/right-turn movement during the Saturday peak hour. 95th percentile queue lengths are projected to exceed the storage capacity during the weekday p.m. peak hour by 2.2 metres for the eastbound left-turn movement and by 1.2 metres for the northbound left-turn movement. 95th percentile

queue lengths are projected to exceed the storage capacity during the Saturday peak hour by 2.8 metres for the eastbound left-turn movement and by 5.7 metres for the northbound left-turn movement. Therefore, queue lengths are expected to occasionally extend into the tapers and adjacent through lanes.

The intersection of Pine Street at the Site Access is projected to operate at a Level of Service "A" during the weekday p.m. and Saturday peak hour. A maximum average delay per vehicle of 9.7 seconds is projected for the Saturday peak hour, with a maximum volume-to-capacity ratio of 0.01 for the northbound movement.

The Site Access is located approximately 35.6 metres west of the intersection of Pine Street at Ontario Street South. During the weekday p.m. peak hour the average 95th percentile queue length for the eastbound through/right-turn movement is approximately 29.4 metres, based on SimTraffic results. During the Saturday peak hour the average 95th percentile queue length is approximately 31.8 metres. Therefore, the queue at the intersection will not obstruct the proposed site access during either peak hours.

6.0 SITE ACCESS GEOMETRICS

A sight line review of the site access was undertaken using the Transportation Association of Canada's Geometric Design Manual for Canadian Roads (TAC Manual). Minimum required turning sight distances were derived using a design speed of 50 km/h, corresponding to the posted 40 km/h speed limit on Pine Street. Figure 2.3.3.4a and Figure 2.3.3.4b of the TAC Manual are attached to this letter.

For Pine Street, the minimum Turning Sight Distance required is 107 metres as per Figure 2.3.3.4b of the TAC Manual. This represents the "sight distance for a passenger vehicle to turn left onto a two-lane roadway without being overtaken by a vehicle approaching from the right".

Pine Street is a straight, flat, roadway. Therefore the sight distances available exceed 107 metres and are above the acceptable ranges outlined in Figure 2.3.3.4a and Figure 2.3.3.4b of the TAC Manual. Therefore, no sight line issues exist. Additionally, no issues related with corner clearances, access conflicts, heavy truck movements and transit operational conflicts were identified.

7.0 CONCLUSION

Under 2016 existing traffic conditions, the intersection of Pine Street at Ontario Street South operates at a Level of Service "A" during the weekday p.m. and Saturday peak hours. The maximum average delay per vehicle is 9.6 seconds during the Saturday peak hour, with a maximum volume-to-capacity ratio of 0.47 for the westbound through/right-turn movement. 95th percentile queue lengths exceed the storage capacity during the Saturday peak hour by 3.5 metres for the eastbound left-turn movement and by one metres for the northbound left-turn movement. Therefore, queue lengths are expected to occasionally extend into the tapers and adjacent through lanes.

The proposed development is projected to generate a total of 12 trips during the weekday p.m. peak hour, and 10 trips during the Saturday peak hour.

Under 2022 total traffic conditions, the intersection of Pine Street at Ontario Street South is projected to operate at a Level of Service "A" and "B" during the weekday p.m. and Saturday peak hours, respectively. The maximum average delay per vehicle is projected to be 11.9 seconds during the Saturday peak hour, an

increase of 2.3 seconds compared to existing conditions. A maximum volume-to-capacity ratio of 0.59 is projected for the westbound through/right-turn movement during the Saturday peak hour. 95th percentile queue lengths are projected to exceed the storage capacity during the weekday p.m. peak hour by 2.2 metres for the eastbound left-turn movement and by 1.2 metres for the northbound left-turn movement. 95th percentile queue lengths are projected to exceed the storage capacity during the Saturday peak hour by 2.8 metres for the eastbound left-turn movement and by 5.7 metres for the northbound left-turn movement. Therefore, queue lengths are expected to occasionally extend into the tapers and adjacent through lanes.

The intersection of Pine Street at the Site Access is projected to operate at a Level of Service "A" during the weekday p.m. and Saturday peak hour. A maximum average delay per vehicle of 9.7 seconds is projected for the Saturday peak hour, with a maximum volume-to-capacity ratio of 0.01 for the northbound movement.

The Site Access is located approximately 35.6 metres west of the intersection of Pine Street at Ontario Street South. During the weekday p.m. peak hour the average 95th percentile queue length for the eastbound through/right-turn movement is approximately 29.4 metres, based on SimTraffic results. During the Saturday peak hour the average 95th percentile queue length is approximately 31.8 metres. Therefore, the queue at the intersection will not obstruct the proposed site access during either peak hours.

The proposed site will be accessible via Pine Street. No sightline issues are anticipated at the site access. Additionally, no issues related to corner clearances, access conflicts, heavy truck movements and transit operational conflicts were identified.

The Zoning By-Law Amendment and Site Plan Approval for the proposed development can be supported from a traffic operations perspective. We trust that this review satisfies any transportation concerns associated with this development. Please feel free to contact the undersigned for any further information required.

Respectfully submitted by,

C.F. CROZIER & ASSOCIATES INC.

Nawfal Kammah, B.Eng., E.I.T.

1:\1200\1286-Valour Mgmt Inc\4485-70 Pine St\Letters\2017.02.27 70 Pine TOL.doc

Transportation

L anon Wgall

C.F. CROZIER & ASSOCIATES INC.

R. Aaron Wignall

Senior Transportation Technologist

ATTACHMENTS

Nawfal Kammah

From:

Michael.Turco@milton.ca

Sent:

Thursday, December 08, 2016 11:35 AM

To: Cc: Nawfal Kammah Aaron Wignall

Subject:

RE: 70 Pine Street Development Terms of Reference (1286-4485)

Hello Nawfal,

A Traffic Brief as opposed to a full Transportation Impact Study is acceptable.

- Analysis will include the intersection of Pine Street at Ontario Street. Acceptable
- To reflect the residential use of the site, the weekday AM and PM peak hours will be analyzed. Please analyze weekday PM and Saturday peak hours due to the close proximity of the shopping centre.
- Trip distribution will be based on Existing Travel Patterns. Acceptable.
- Existing traffic volumes and total traffic volumes (which includes existing volumes and site generated traffic) will be analyzed. Existing conditions and a 5-year post build-out future total horizon are to be analyzed. Please include the following other area developments in the future total volumes:
 - Hallawest Developments East side of Ontario Street b/w Laurier Ave & Centennial Forest Drive—TIS conducted by Paradigm Transportation Solutions in 2014
 - Lowes in Milton Mall TIS conducted by Dillon Consulting in 2014
 - 80 Ontario Street North TIS conducted by Paradigm Transportation Solutions in 2016
- The safety at the site access will be analyzed. As part of the site access review, please ensure that the site access conforms to all TAC and OPSD 350.010 standards.
- Please conduct a SimTraffic queuing analysis to ensure that the site driveway is not consistently blocked.
- In support of the minor variance, a parking justification study is required. Please conduct parking surveys at two
 to three similar sites within the Town of Milton. Please also compare the Zoning by-law requirements to the ITE
 Parking Generation Manual 4th Edition. Additionally, a TDM component must also be included with detailed
 recommendations to justify the reduction in parking requirements.

If you have any questions or concerns, please feel free to contact me.

Regards,

Michael Turco, C.E.T., MITE
Transportation Planning Technologist

Engineering Services | Town of Milton 905-878-7252 ext. 2363 | michael.turco@milton.ca

From: Nawfal Kammah [mailto:nkammah@cfcrozier.ca]

Sent: Monday, December 05, 2016 1:28 PM

To: Michael Turco **Cc:** Aaron Wignall

Subject: 70 Pine Street Development Terms of Reference (1286-4485)

Hi Michael,

I apologize for the numerous emails today. We have been retained for many projects in the Town of Milton which require your input.

We have been retained to put together a Traffic Impact Study for a development located at 70 Pine Street, in the Town of Milton. I have attached the latest site plan for your review.

The proposed residential development will have a relatively minor impact to the operations of the boundary road network and is estimated to generate 13 trips during the weekday AM Peak Hour and 15 trips during the weekday PM Peak Hour using the average rate of the ITE trip generation manual, Category 220 (Apartment).

Due to the small amount of trips generated by the proposed development would the Town agree to a Traffic Opinion Letter (TOL) rather than a full Traffic Impact Study?

If a TOL is satisfactory, we would like your approval of the following steps in order to begin our analysis:

- Analysis will include the intersection of Pine Street at Ontario Street.
- To reflect the residential use of the site, the weekday AM and PM peak hours will be analyzed.
- Trip distribution will be based on Existing Travel Patterns.
- Existing traffic volumes and total traffic volumes (which includes existing volumes and site generated traffic) will be analyzed.
- The safety at the site access will be analyzed.

I hope the above is acceptable. Should you have any questions or concerns please feel free to contact myself or my colleague Aaron Wignall copied on this email.

Thanks for your time,

| NAWFAL KAMMAH E.I.T. | C.F. CROZIER & ASSOCIATES

| 2800 High Point Drive, Suite 100 | Milton, ON L9T 6P4 | cfcrozier.ca | nkammah@cfcrozier.ca | tel 905 875 0026

Land development engineering, from the ground up.

Water Besources-Transportation-Structural-Mechanical-Electrical-Building Science

This communication is intended solely for the attention and use of the named recipients and contains information that is privileged and confidential. If you are not the intended recipient, or the person responsible for delivering this information to the intended recipient, please notify us immediately by telephone. If you have received this information in error, please be notified that you are not authorized to read, copy, distribute, use or retain this message or any part of it.

Need to send us LARGE or IMPORTANT files? Need guaranteed delivery? Simply go to https://fta.milton.ca. Contact Help.desk@milton.ca for an account.

TOWN OF MILTON NOTICE

This message is intended for use only by the individual(s) to whom it is specifically addressed above and should not be read by, or delivered to any other person. Such material may contain privileged and confidential information. IF THE READER OF THIS MESSAGE IS NOT THE INTENDED RECIPIENT YOU ARE HEREBY NOTIFIED THAT ANY DISSEMINATION, DISTRIBUTION OR COPYING OF THIS COMMUNICATION IS STRICTLY PROHIBITED. No rights or privilege have been waived. If you have received in error, please reply to the sender by e-mail and delete or destroy all copies of this message.

Cycling Map and Legend

Metres 0 2,000

Ontario Traffic Inc. **Afternoon Peak Diagram Specified Period One Hour Peak** From: 16:00:00 From: 16:30:00 To: 17:30:00 19:00:00 To: Weather conditions: Municipality: Milton Site #: 1635500001 Intersection: Person(s) who counted: Ontario St & Pine St-Plaza Drivewa TFR File #: 19 Count date: 13-Dec-16 ** Signalized Intersection ** Major Road: Ontario St runs N/S North Leg Total: 2139 Heavys 0 0 3 Heavys 1 East Leg Total: 245 Trucks 1 0 22 North Entering: 1147 21 Trucks 35 East Entering: 121 North Peds: Cars 50 997 75 1122 Cars 956 East Peds: 4 \mathbb{X} Totals 51 75 Peds Cross: Peds Cross: ⋈ 1021 Totals 992 Ontario St Heavys Trucks Cars Totals Trucks Heavys Totals Cars 114 116 0 79 14 0 1 15 27 0 27 Pine St 120 Heavys Trucks Cars Totals Plaza Driveway 1 33 34 1 0 19 20 0 Trucks Heavys Totals 0 64 64 Cars 123 116 124 Ontario St \mathbb{X} Peds Cross: Peds Cross: \bowtie Cars 1088 Cars 50 844 29 923 4 West Peds: Trucks 21 Trucks 0 34 0 34 South Peds: 6 Heavys 3 1 West Entering: 118 Heavys 0 0 South Entering: 958 West Leg Total: 234 Totals 1112 Totals 50 South Leg Total: 2070 **Comments**

Total Count Diagram

Municipality: Milton

Site #: 1635500001

Intersection: Ontario St & Pine St-Plaza Drivewa

TFR File #: 19

Count date: 13-Dec-16

Weather conditions:

Person(s) who counted:

** Signalized Intersection **

North Leg Total: 5800 Heavys 0 Trucks 1 North Entering: 3073 75 North Peds: 21 Cars 124 2686

Totals 125 2765 183

0

1

182

Major Road: Ontario St runs N/S

Heavys 1 Trucks 90 Cars 2636 Totals 2727 East Leg Total: 624 East Entering: 303 East Peds: 10 \mathbb{X} Peds Cross:

Heavys Trucks Cars Totals 2 337 340

⋈

Peds Cross:

Peds Cross:

West Peds:

West Entering: 308

West Leg Total: 648

Pine St

Heavys Trucks Cars Totals 0 1 83 84 2 52 55 0 169 169 0 304

 \mathbb{X}

15

Cars 2919

Totals 2998

Trucks 75

Heavys 4

77

2992

Ontario St

Trucks Heavys Totals Cars 202 203 35 1 36 64 0 64 301

Plaza Driveway

Ontario St

2612 Cars 178 2351 83 Trucks 1 0 89 88 1 Heavys 0 0 Totals 179 2440

Trucks Heavys Totals Cars 317 2 321

> Peds Cross: \bowtie South Peds: 14 South Entering: 2702 South Leg Total: 5700

Comments

Ontario Traffic Inc Traffic Count Summary

Totals													
North Approach Totals										h Appro	ach Tot	als	
	Include	s Cars, T	rucks, & H	eavys		North/South			Include	es Cars, T	rucks, & H	eavys	
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total	Hou Endi	ır ng	Left	Thru	Right	Grand Total	Total Peds
16:00:00 17:00:00 18:00:00	0 79 60	0 947 981	0 41 49	0 1067 1090	0 8 7	0 2034 2033	16:00 17:00 18:00	0:00 0:00 0:00	0 60 72	0 877 847	0 30 24	0 967 943	Peds 0 4 7 3
Totals:					21	5768							14
	Include	s Cars, T	rucks, & H	eavys		Fast/Mest			Include	es Cars, T	rucks, & H	eavys	
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total	Hou Endi	ır ng	Left	Thru	Right	Grand Total	Total Peds
17:00:00 18:00:00	20 27	19 9	67 82	106 118	2 5	227 215	17:00 18:00	0:00 0:00	27 30	27 16	67 51	121 97	0 4 8 3
Totals:	64	36	-								168	307	15
_						or Traffic Cr		_	-				
Hours End Crossing		16:00 0	16:00 0	17:00 86	17:00 86		18	3:00 87	18:00 87	19:00 65	19:00 65		

		Passeng	ger Cars -	North Ap	proach			Tru	cks - Nort	h Appro	ach			Hea	ıvys - Nor	th Appro	ach		Pedes	trians
Interval	Le	ft	Thr	·u	Rig	ht	Le	ft	Th	ru	Rig	ht	Le	ft	Th	ru	Rig	ht	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
16:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15:00	19	19	187	187	7	7	0	0	11	11	0	0	0	0	0	0	0	0	2	2
16:30:00	35	16	420	233	18	11	0	0		8	0	0	0	0	0	0	0	0	3	1
16:45:00	59	24	672	252	29	11	0	0		6		0	0	0		2	0	0	4	1
17:00:00	79	20	915	243	40	11	0	0		5	1	1	0	0		0		0	8	4
17:15:00	95	16	1163	248	57	17	0	0		4	1	0		0		1	0	0	9	1
17:30:00	110	15	1417	254	68	11	0	0		6		0		0		0		0	12	3
17:45:00	126	16	1622	205	81	13	0	0		5		0		0		0		0	12	0
18:00:00	139	13	1874	252	89	8	0	0		6		0		0		0		0	15	3
18:15:00	145	6	2108	234	103	14	0	0		4	1	0		0		1	0	0	18	3
18:30:00	155	10	2332	224	108	5	1	1	65	10		0		0		0		0	20	2
18:45:00	173	18	2512	180	113	5	1	0		5		0		0		0		0	21	1
19:00:00	182	9	2683	171	124	11	1	0		5		0		0		0		0	21	0
19:00:42	182	0	2686	3	124	0	1	0	75	0	1	0	0	0	4	0	0	0	21	0

		Passen	ger Cars -	East Ap	proach			Tre	ucks - Eas	st Approa	ach			Hea	avys - Eas	st Approa	ach		Pedes	trians
Interval	Lef	t	Thr	·u	Rig	ht	Le	ft	Th	ru	Rig	ght	Le	ft	Th	ru	Rig	ht	East C	cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
16:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15:00	4	4	6	6		13	0	0	0	0	0	0	0	0	0	0	0	0	1	1
16:30:00	6	2	10	4	34	21	0	0		0	1	0		0	0	0	0	0	2	
16:45:00	17	11	16	6		12	0	0		0		0		0		1	0	0		
17:00:00	20	3		2		21	0	0		0		0		0		0	0	0		0
17:15:00	25	5		1	84	17	0	0		0		0		0		0	0	0		
17:30:00	33	8	24	5		29	0	0		0		0		0		0	0	0	6	1
17:45:00 18:00:00	38 47	5 9		1 2	138 149	25 11	0	0		0		0		0		0	0	0		0
18:15:00	51	4	28	1	164	15	0	0		0		0		0		0	0	0	-	1
18:30:00	53	2	29	1	173	9	0	0		0		0		0		0	0	0		2
18:45:00	58	5	31	2		14	0	0		0		0		0		0	0	0		0
19:00:00	64	6		4		15	0	0		0		1		0		0	0	0		0
19:00:42	64	0	35	0		0	0	0		0		0		0		0	0	0		0

		Passeng	er Cars -	South Ap	pproach			Tru	cks - Sou	th Appro	ach			Hea	ıvys - Sou	ıth Appro	ach		Pedes	trians
Interval	Le	ft	Thi	·u	Rig	ht	Le	ft	Th	ru	Rig	ht	Le	ft	Th	ru	Rig	ht	South	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
16:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15:00	20	20	190	190	3	3	0	0	10	10	0	0	0	0	0	0	0	0	1	1
16:30:00	34	14	411	221	9	6	0	0	22	12		0	0	0	0	0	0	0	1	0
16:45:00	46	12	619	208	15	6	0	0		8		0	0	0	0	0	0	0	4	3
17:00:00	60	14	836	217	30	15	0	0		11		0		0		0	0	0	4	0
17:15:00	69	9	1037	201	35	5	0	0		7		0		0		0	0	0	6	2
17:30:00	84	15	1255	218	38	3	0	0		8		0		0		1	0	0	7	1
17:45:00	113	29	1450	195	46	8	1	1	61	5		0		0		0	0	0	8	1
18:00:00	131	18	1657	207	54	8	1	0		5		0		0		0	0	0	11	3
18:15:00	145	14	1864	207	58	4	1	0		4	0	0		0		0	0	0	11	0
18:30:00	156	11	2025	161	73	15	1	0		7		0		0		0	0	0	11	0
18:45:00	165	9	2182	157	79	6	1	0		5		0		0		0	0	0	13	2
19:00:00	178	13	2348	166	83	4	1	0		5		0		0		0	0	0	14	1
19:00:42	178	0	2351	3	83	0	1	0	88	1	0	0	0	0	1	0	0	0	14	0

		Passen	ger Cars -	West Ap	proach			Tru	ıcks - We	st Appro	ach			Hea	avys - We	st Appro	ach		Pedes	trians
Interval	Lei	ft	Th	ru	Rig	ıht	Le	ft	Th	ru	Rig	ght	Le	ft	Th	ru	Rig	ht	West (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
16:00:00		0		0		0		0	0	0	0	0		0	0	0	0	0	0	0
16:15:00		7	9	9	12	12		0		0				0		0	0	0	1	1
16:30:00	12	5		8		23	0	0		1	0			0		0	0	0	3	2 0
16:45:00		7		6		19	1_	1	1	0				0		0	0	0	3	
17:00:00 17:15:00		7		3	67 84	13 17	1	0		0		0		0		0	0	0	4	1 2
17:15:00		6 13		7		17	1	0		0		0		0		1	0	0	6 7	1
17:45:00	52	7		2		8	<u>'</u> 1	0		0				0		0	0	0	9	
18:00:00		4	41	3		11	1	0		0			1	0		0	0	0	12	3
18:15:00		8		6		16	1	0		0		0		0		1	0	0	12	0
18:30:00	69	5	49	2		12	1	0	1	0	0			0		0	0	0	15	2 3 0 3
18:45:00		9		0		10	1	0		0				0		0	0	0	15	0
19:00:00	83	5		3		12	1	0		0				0		0	0	0	15	0
19:00:42	83	0	52	0	169	1	1	0	1	0	0	0	0	0	2	0	0	0	15	0

Ontario Traffic Inc. Mid-day Peak Diagram **Specified Period One Hour Peak** From: 12:00:00 From: 10:00:00 To: 15:00:00 To: 13:00:00 Weather conditions: Municipality: Milton Site #: 1635500002 Intersection: Person(s) who counted: Ontario St & Pine St-Plaza Driveway TFR File #: Count date: 10-Dec-16 ** Signalized Intersection ** Major Road: Ontario St runs N/S North Leg Total: 1852 Heavys 0 0 0 Heavys 0 East Leg Total: 357 14 Trucks 0 0 North Entering: 910 14 Trucks 17 East Entering: 170 North Peds: 21 Cars 38 726 132 896 Cars 925 East Peds: 3 \mathbb{X} Totals 38 Peds Cross: Peds Cross: ⋈ 740 132 Totals 942 Ontario St Heavys Trucks Cars Totals Trucks Heavys Totals Cars 110 111 0 0 121 14 0 0 14 35 0 35 Pine St 170 0 Heavys Trucks Cars Totals Plaza Driveway 0 0 42 42 0 0 28 28 0 72 72 Trucks Heavys Totals 0 Cars 0 142 187 187 Ontario St \mathbb{X} Peds Cross: Cars 833 847 Peds Cross: \bowtie Cars 58 762 27 West Peds: 0 Trucks 14 Trucks 1 17 0 18 South Peds: 1 0 South Entering: 865 West Entering: 142 Heavys 0 Heavys 0 0 0 West Leg Total: 253 Totals 59 South Leg Total: 1712 Totals 847 **Comments**

Total Count Diagram

Municipality: Milton

Site #: 1635500002

Intersection: Ontario St & Pine St-Plaza Drivewa

TFR File #: 1

Count date: 10-Dec-16

Weather conditions:

Person(s) who counted:

** Signalized Intersection **

ignanzed intersection

North Entering: 4232 North Peds: 96 Peds Cross: ⋈

North Leg Total: 8535

Heavys 0 0 0 0 0 0 7 0 67 Cars 152 3420 593 4165 Totals 152 3487 593

Heavys 0
Trucks 87
Cars 4216
Totals 4303

Major Road: Ontario St runs N/S

East Leg Total: 1656
East Entering: 759
East Peds: 19
Peds Cross:

Heavys Trucks Cars Totals
0 1 490 491

Ontario St

Plaza Driveway

 Heavys Trucks
 Cars
 Totals

 0
 0
 172
 172

 0
 0
 170
 170

 0
 1
 264
 265

606

Pine St

			V
Cars	Trucks	Heavys	Totals
897	0	0	897

Peds Cross:

West Peds: 26

West Entering: 607

West Leg Total: 1098

 Cars
 3859

 Trucks
 68

 Heavys
 0

 Totals
 3927

Truc Heav

 Cars
 254
 3544
 134
 3932

 Trucks
 1
 87
 0
 88

 Heavys
 0
 0
 0
 0

 Totals
 255
 3631
 134

Peds Cross:
South Peds: 14

South Entering: 4020

South Leg Total: 7947

Comments

Ontario Traffic Inc Traffic Count Summary

Intersection: (Ontario S	St & Pin	e St-Plaz	za Drivev	Vé Count D	Date: 10-Dec-16	3	Munic	cipality: Mil	ton			
	North	Appro	ach Tot	als					South	1 Appro	ach Tot	als	
	Include	s Cars, T	rucks, & H	eavys		North/South			Include	s Cars, T	rucks, & H	eavys	
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hoı Endi	ır ng	Left	Thru	Right	Grand Total	Total Peds
10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00	0 115 124 132 102 120	5 627 658 740 740 717	0 20 26 38 34 34	5 762 808 910 876 871	0 14 14 21 31 16	1510 1555 1775 1786	10:00 11:00 12:00 13:00 14:00 15:00	0:00 0:00 0:00 0:00	0 40 40 59 70 46	4 690 675 779 806 670	0 18 32 27 34 23	4 748 747 865 910 739	0 6 0 1 7 0
Totala	500	2407	450	4222	00	0045			255	2604	404	4040	4.4
Totals:	593 Fast	3487 Appro	152 ach Tota	4232	96	8245			255 West	3624 Appro	134 ach Tota		14
	Include	s Cars, T	rucks, & H	eavys		East/West			Include	es Cars, T	rucks, & H	eavys	
Hour Ending	Left	Thru	Right	Grand Total	Total Peds	Total Approaches	Hoı Endi	ır ng	Left	Thru	Right	Grand Total	Total Peds
10:00:00 11:00:00 12:00:00 13:00:00 14:00:00 15:00:00	0 30 49 35 30 31	0 16 21 14 15 18	0 70 98 121 119 92	0 116 168 170 164 141	0 4 2 3 6 4	201 271 312 295	10:00 11:00 12:00 13:00 14:00 15:00	0:00 0:00 0:00 0:00	0 22 33 42 30 45	0 27 28 28 35 52	0 36 42 72 66 49	0 85 103 142 131 146	0 7 0 0 12 7
Totals: Hours En		84 10:00 0	500 Calc 11:00 99	759 ulated V 12:00 124	19 alues f 13:00 127	1366 or Traffic Cr	ossin 14	g M a 4:00 133	-	170 eet 15:00 144	265 15:00 144	607	26

		Passeng	ger Cars -	North Ap	oproach			Tru	icks - Nor	h Appro	ach			Hea	avys - Nor	th Appro	ach		Pedes	trians
Interval	Le	ft	Thr	·u	Rig	ht	Le	ft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ht	North	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
10:00:00	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O
10:15:00	28	28	158	153	2	2	0	0	7	7	0	0	0	0	0	0	0	0	1	1
10:30:00	52	24	296	138	8	6	0	0	10	3	0	0	0	0	0	0	0	0	3	2
10:45:00	75	23	447	151	12	4	0	0		4	0	0	0	0	0	0	0	0	8	2 5
11:00:00	115	40	615	168	20	8	0	0		3	0	0	0	0	0	0	0	0	14	6
11:15:00	145	30	799	184	28	8	0	0		5	0	0	0	0	0	0	0	0	17	3
11:30:00	169	24	962	163	32	4	0	0		4	0	0		0		0	0	0	21	4
11:45:00	197	28	1080	118	37	5	0	0		1	0	0		0		0	0	0	24	3
12:00:00	239	42	1255	175	46	9	0	0		8	0	0	0	0	0	0	0	0	28	4
12:15:00	266	27	1441	186	57	11	0	0		4	0	0		0		0	0	0	33	5
12:30:00	314	48	1615	174	63	6	0	0		5	1	0		0		0	0	0	38	5
12:45:00	335	21	1789	174	75	12	0	0		2		0		0		0	0	0	45	7
13:00:00	371	36	1981	192	84	9	0	0		3	0	0	0	0	0	0	0	0	49	4
13:15:00	393	22	2149	168	100	16	0	0		4	0	0		0		0	0	0	60	11
13:30:00	420	27	2328	179	105	5	0	0		1	0	0		0			0	0	65	5
13:45:00	444	24	2543	215	107	2	0	0		0	_	0		0	0	0	0	0	74	9
14:00:00	473	29	2712	169	118	11	0	0		4	0	0		0		0	0	0	80	6
14:15:00	512	39	2876	164	123	5	0	0		1	0	0		0		0	0	0	82	3
14:30:00	528	16	3076	200	129	6	0	0		3	1	0		0		0	0	0	85	3
14:45:00	556	28	3238	162	142	13	0	0		3		0		0	0	0	0	0	91	6
15:00:00	593	37	3420	182	152	10	0	0		2		0		0		0	0	0	96	5
15:00:14	593	0	3420	0	152	0	0	0	67	0	0	0	0	0	0	0	0	0	96	0

		Passen	ger Cars ·	East Ap	proach			Tro	ucks - Eas	st Appro	ach			He	avys - Eas	st Approa	ach		Pedes	trians
Interval	Le	ft	The	·u	Rig	ht	Le	ft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ht	East (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
10:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
10:15:00	6	6	1	1	16	16	0	0	0	0		0	0	0	0	0	0	0	1	1
10:30:00	9	3	4	3	27	11	0	0	0	0	0	0	0	0	0	0	0	0	2	1
10:45:00	15	6		1	46	19	0	0	0	0	0	0	0	0	0	0	0	0	2	(
11:00:00	30	15		11	70	24	0	0	0	0	0	0	0	0	0	0	0	0	4	2
11:15:00	39	9		8	98	28	0	0	0	0		0		0		-	0	0	6	2
11:30:00	57	18		4	128	30	0	0		0		0		0		0	0	0	6	
11:45:00	71	14		5	149	21	0	0		0		0		0		0	0	0	6	(
12:00:00	79	8		4		19	0	0				0		0		0	0	0	6	(
12:15:00	94	15		4		32	0	0		0		0		0		0	0	0	8	2
12:30:00	102	8		6	234	34	0	0		0		0		0			0	0	8	(
12:45:00	105	3		2	262	28	0	0		0		0		0			0	0	9	1
13:00:00	114	9		2		27	0	0		0		0		0		0	0	0	9	(
13:15:00	118	4		4	325	36	0	0		0	1	0		0		0	0	0	10	1
13:30:00	127	9		4	354	29	0	0		0		0		0			0	0	12	3
13:45:00	134	7		3		21	0	0		0		0		0		0	0	0	15	3
14:00:00	144	10		4		33	0	0		0		0		0		-	0	0	15	(
14:15:00	148	4		2		25	0	0		0		0		0			0	0	17	2
14:30:00	156	8		4	459	26	0	0		0	1	0		0		0	0	0	17	(
14:45:00	163 175	7		6		12 29	0	0		0	_	0		0			0	0	18	
15:00:00		12		6	500		0	0		0				0			0	0	19 19	
15:00:14	175	0	84	0	500	0	0	0	0	0	0	0	0	0	0	0	0	0	19	(

Passenger Cars - South Approach						Trucks - South Approach							Hea	ıvys - Sou	th Appro	ach		Pedes	trians	
Interval	Le	ft	Thr	u	Rig	ht	Le	ft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ht	South	Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
10:00:00	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10:15:00	3	3	161	157	3	3	0	0	4	4	0	0	0	0	0	0	0	0	0	(
10:30:00	24	21	337	176	9	6	0	0	8	4	0	0	0	0	0	0	0	0	0	C
10:45:00	31	7	497	160	12	3	0	0		3	0	0	0	0	0	0	0	0	0	
11:00:00	40	9		179	18	6	0	0		7	0	0	0	0	0	0	0	0	6	6
11:15:00	53	13	865	189	23	5	0	0		5	0	0	0	0	0	0	0	0	6	
11:30:00	58	5	1025	160	37	14	0	0		3		0		0		0	0	0	6	
11:45:00	67	9	1155	130	42	5	0	0		3	0	0	0	0	0	0	0	0	6	
12:00:00	80	13	1338	183	50	8	0	0		2		0	0	0	0	0	0	0	6	
12:15:00	94	14	1540	202	57	7	0	0		7	0	0	0	0	0	0	0	0	7	
12:30:00	110	16	1737	197	61	4	1	1	43	5	0	0		0		0	0	0	7	
12:45:00	125	15	1900	163	68	7	1	0		3		0		0		0	0	0	7	
13:00:00	138	13	2100	200	77	9	1	0		2	0	0	0	0	0	0	0	0	7	
13:15:00	158	20	2304	204	87	10	1	0		6	0	0		0		0	0	0	9	
13:30:00	173	15	2490	186	101	14	1	0		7		0		0		0	0	0	9	(
13:45:00	188	15	2675	185	107	6	1	0		3		0		0	0	0	0	0	10	1
14:00:00	208	20	2886	211	111	4	1	0		4	0	0		0		0	0	0	14	
14:15:00	218	10	3059	173	117	6	1	0		4	0	0		0		0	0	0	14	
14:30:00	232	14	3220	161	120	3	1	0		6		0		0		0	0	0	14	
14:45:00	244	12	3386	166	128	8	1	0		5		0		0	0	0	0	0	14	
15:00:00	254	10		151	134	6	1	0		4	0	0		0		0	0	0	14	
15:00:14	254	0	3544	7	134	0	1	0	87	0	0	0	0	0	0	0	0	0	14	(

		Passen	ger Cars -	West Ap	proach			Tru	ıcks - We	st Appro	ach			Hea	avys - We	st Appro	ach		Pedes	trians
Interval	Le	ft	Thi	ru	Rig	ht	Le	ft	Th	ru	Rig	jht	Le	ft	Th	ru	Rig	ht	West (Cross
Time	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr	Cum	Incr
10:00:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
10:15:00	5	5	7	7	11	11	0	0	0	0		0	0	0	0	0	0	0	0	O
10:30:00	11	6		5	23	12	0	0	0	0	0	0	0	0	0	0	0	0	2	
10:45:00	15	4	17	5	30	7	0	0	0	0	0	0	0	0	0	0	0	0	2	C
11:00:00	22	7	27	10	35	5	0	0		0	1	1		0		0	0	0	7	5
11:15:00	30	8		12	49	14	0	0		0		0		0			0	0	7	0
11:30:00	36	6		8	58	9	0	0		0		0		0		0	0	0	7	
11:45:00	46	10	52	5	70	12	0	0		0		0		0		0	0	0	7	C
12:00:00	55	9		3	77	7	0	0		0		0		0		0	0	0	7	C
12:15:00	67	12		5	103	26	0	0		0		0		0		0	0	0	7	
12:30:00	73	6		9	120	17	0	0		0		0		0		0	0	0	7	0
12:45:00	87	14	76	7	133	13	0	0		0		0		0		0	0	0	7	C
13:00:00	97	10		7	149	16	0	0		0		0		0	1	0	0	0	7	0
13:15:00	102	5		14	173	24	0	0		0		0		0		0	0	0	13	6
13:30:00	111	9		11	186	13	0	0		0		0		0			0	0	17	4
13:45:00	115	4	112	4	199	13	0	0		0		0		0		0	0	0	18	1
14:00:00	127	12		6	215	16	0	0		0		0		0		0	0	0	19	1
14:15:00	138	11	127	9	228	13	0	0		0		0		0			0	0	19 19	0
14:30:00 14:45:00	146 160	8 14	135 166	8 31	240 257	12 17	0	0		0		0		0		0	0	0	22	3
15:00:00	172	12		4	264	7	0	0		0		0		0			0	0	26	3
15:00:00	172	0		0	264	0	0	0		0		0		0			0	0	26	0
15.00.14	172	U	170	U	204	U	0	U	0	0	1	U	0	U	0	U	0	U	20	

Level of Service Definitions

Two-Way Stop Controlled Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation							
		EXCELLENT. Large and frequent gaps in							
А	≤ 10	traffic on the main roadway. Queuing on							
		the minor street is rare.							
		VERY GOOD. Many gaps exist in traffic on							
В	> 10 and ≤ 15	the main roadway. Queuing on the minor							
		street is minimal.							
		GOOD. Fewer gaps exist in traffic on the							
С	> 15 and ≤ 25	main roadway. Delay on minor approach							
		becomes more noticeable.							
		FAIR. Infrequent and shorter gaps in traffic							
D	> 25 and ≤ 35	on the main roadway. Queue lengths							
		develop on the minor street.							
		POOR. Very infrequent gaps in traffic on							
E	> 35 and ≤ 50	the main roadway. Queue lengths							
		become noticeable.							
		UNSATISFACTORY. Very few gaps in traffic							
F	> 50	on the main roadway. Excessive delay							
Г	> 30	with significant queue lengths on the							
		minor street.							

Adapted from Highway Capacity Manual 2000, Transportation Research Board

Level of Service Definitions

Signalized Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
А	≤ 10	EXCELLENT. Extremely favourable progression with most vehicles arriving during the green phase. Most vehicles do not stop and short cycle lengths may contribute to low delay.
В	> 10 and ≤ 20	VERY GOOD. Very good progression and/or short cycle lengths with slightly more vehicles stopping than LOS "A" causing slightly higher levels of average delay.
С	> 20 and ≤ 35	GOOD. Fair progression and longer cycle lengths lead to a greater number of vehicles stopping than LOS "B".
D	> 35 and ≤ 55	FAIR. Congestion becomes noticeable with higher average delays resulting from a combination of long cycle lengths, high volume-to-capacity ratios and unfavourable progression.
E	> 55 and ≤ 80	POOR. Lengthy delays values are indicative of poor progression, long cycle lengths and high volume-to-capacity ratios. Individual cycle failures are common with individual movement failures also common.
F	> 80	UNSATISFACTORY. Indicative of oversaturated conditions with vehicular demand greater than the capacity of the intersection.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

	۶	→	*	•	4-	1	1	†	~	1	 	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		ሻ	1→		ሻ	†		ሻ	↑ ↑	
Volume (vph)	34	20	64	27	15	79	50	879	29	75	1021	51
Ideal Flow (vphpl)	1800	1850	1550	1800	1850	1550	1800	1850	1550	1800	1850	1550
Storage Length (m)	20.0		0.0	0.0		0.0	25.0		0.0	45.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.885			0.873			0.995			0.993	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1679	1636	0	1729	1615	0	1729	3405	0	1729	3460	0
Flt Permitted	0.695			0.702			0.261			0.260		
Satd. Flow (perm)	1228	1636	0	1278	1615	0	475	3405	0	473	3460	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		65			81			4			8	
Link Speed (k/h)		40			50			50			50	
Link Distance (m)		248.4	112 11		293.8			205.4			204.8	
Travel Time (s)		22.4			21.2			14.8			14.7	
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	3%	5%	0%	0%	7%	0%	0%	4%	0%	0%	2%	2%
Adj. Flow (vph)	35	20	65	28	15	81	51	897	30	77	1042	52
Shared Lane Traffic (%)							•				, 0 .2	02
Lane Group Flow (vph)	35	85	0	28	96	0	51	927	0	77	1094	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	20.1	3.7	, agair	Lon	3.7	, again	2011	3.7	· ···g/···	Lon	3.7	i ngin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane	0.00	THE COLUMN		100	52011117			IN A THE R			1.0	
Headway Factor	1.06	1.02	1.28	1.06	1.02	1.28	1.06	1.02	1.28	1.06	1.02	1.28
Turning Speed (k/h)	24	1.02	14	24	Serie II	14	24	1.02	14	24	1.02	1.20
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0	NEW DE	0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex		Cl+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel	OII EX	OTTEX		OHEX	OII EX		OITEX	OHEX		OHEX	OIILX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8	A CONTRACTOR		1.8	1 (11)		1.8			1.8	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OITLX			OITLX		0.0	UITLX			OITLX	T
Detector 2 Extend (s)		0.0			0.0			0.0	-		0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		nmint	NA	
Protected Phases	r ellii	1NA 4		Fellii	NA 8	70121	Fellil	NA 2		pm+pt 1	NA 6	
Permitted Phases	4	4	1911	0	0		0	2			0	
remilled rhases	4			8			2			6		

	۶	→	\rightarrow	•	←		4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4	7	8	8	JEDA I	2	2	sent skin	1	6	Telle.
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		15.0	15.0		5.0	15.0	
Minimum Split (s)	34.0	34.0		34.0	34.0		23.0	23.0		9.0	23.0	
Total Split (s)	38.0	38.0		38.0	38.0		50.0	50.0		17.0	67.0	
Total Split (%)	36.2%	36.2%		36.2%	36.2%		47.6%	47.6%		16.2%	63.8%	
Maximum Green (s)	31.0	31.0		31.0	31.0		44.0	44.0		13.0	61.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0		1.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		6.0	6.0		4.0	6.0	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		None	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0		10.0	10.0			10.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0			0	
Act Effct Green (s)	10.1	10.1		10.1	10.1		56.8	56.8		66.0	65.3	
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.68	0.68		0.79	0.78	
v/c Ratio	0.24	0.33		0.18	0.36		0.16	0.40		0.16	0.41	
Control Delay	37.9	17.0		36.4	15.2		9.5	8.8		3.6	4.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	37.9	17.0		36.4	15.2		9.5	8.8		3.6	4.6	
LOS	D	В		D	В		Α	Α	11	Α	Α	
Approach Delay		23.1			20.0			8.9			4.5	
Approach LOS		C			В			Α			Α	

Intersection Summary

Area Type: Other

Cycle Length: 105

Actuated Cycle Length: 83.7

Natural Cycle: 70

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.41 Intersection Signal Delay: 8.0 Intersection Capacity Utilization 67.6%

Intersection LOS: A ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: Ontario Street South & Pine Street

1	-	*	+	1	†	-	↓	
EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
35	85	28	96	51	927	77	1094	
0.24	0.33	0.18	0.36	0.16	0.40	0.16	0.41	
37.9	17.0	36.4	15.2	9.5	8.8	3.6	4.6	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
37.9	17.0	36.4	15.2	9.5	8.8	3.6	4.6	
5.2	2.9	4.1	2.2	3.3	38.6	2.5	30.0	
13.6	15.5	11.8	15.3	9.3	54.4	5.6	40.8	
	224.4		269.8		181.4		180.8	
20.0				25.0		45.0		
454	646	473	649	322	2310	568	2699	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0.08	0.13	0.06	0.15	0.16	0.40	0.14	0.41	
	35 0.24 37.9 0.0 37.9 5.2 13.6 20.0 454 0	35 85 0.24 0.33 37.9 17.0 0.0 0.0 37.9 17.0 5.2 2.9 13.6 15.5 224.4 20.0 454 646 0 0 0 0 0 0	35 85 28 0.24 0.33 0.18 37.9 17.0 36.4 0.0 0.0 0.0 37.9 17.0 36.4 5.2 2.9 4.1 13.6 15.5 11.8 224.4 20.0 454 646 473 0 0 0 0 0 0 0 0 0	35 85 28 96 0.24 0.33 0.18 0.36 37.9 17.0 36.4 15.2 0.0 0.0 0.0 0.0 37.9 17.0 36.4 15.2 5.2 2.9 4.1 2.2 13.6 15.5 11.8 15.3 224.4 269.8 20.0 454 646 473 649 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 85 28 96 51 0.24 0.33 0.18 0.36 0.16 37.9 17.0 36.4 15.2 9.5 0.0 0.0 0.0 0.0 0.0 37.9 17.0 36.4 15.2 9.5 5.2 2.9 4.1 2.2 3.3 13.6 15.5 11.8 15.3 9.3 224.4 269.8 20.0 25.0 454 646 473 649 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 85 28 96 51 927 0.24 0.33 0.18 0.36 0.16 0.40 37.9 17.0 36.4 15.2 9.5 8.8 0.0 0.0 0.0 0.0 0.0 0.0 37.9 17.0 36.4 15.2 9.5 8.8 5.2 2.9 4.1 2.2 3.3 38.6 13.6 15.5 11.8 15.3 9.3 54.4 224.4 269.8 181.4 20.0 25.0 454 646 473 649 322 2310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 85 28 96 51 927 77 0.24 0.33 0.18 0.36 0.16 0.40 0.16 37.9 17.0 36.4 15.2 9.5 8.8 3.6 0.0 0.0 0.0 0.0 0.0 0.0 37.9 17.0 36.4 15.2 9.5 8.8 3.6 5.2 2.9 4.1 2.2 3.3 38.6 2.5 13.6 15.5 11.8 15.3 9.3 54.4 5.6 224.4 269.8 181.4 20.0 25.0 45.0 454 646 473 649 322 2310 568 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 85 28 96 51 927 77 1094 0.24 0.33 0.18 0.36 0.16 0.40 0.16 0.41 37.9 17.0 36.4 15.2 9.5 8.8 3.6 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 37.9 17.0 36.4 15.2 9.5 8.8 3.6 4.6 5.2 2.9 4.1 2.2 3.3 38.6 2.5 30.0 13.6 15.5 11.8 15.3 9.3 54.4 5.6 40.8 224.4 269.8 181.4 180.8 20.0 25.0 45.0 454 646 473 649 322 2310 568 2699 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Intersection: 3: Ontario Street South & Pine Street

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	1862
Directions Served	L	TR	L	TR	L	Т	TR	L	Т	TR	
Maximum Queue (m)	13.8	35.9	20.7	30.2	32.3	79.8	64.2	21.9	48.3	63.8	
Average Queue (m)	5.7	11.9	6.7	11.1	13.3	38.5	23.5	11.4	30.2	25.7	
95th Queue (m)	12.5	24.7	15.9	19.7	26.9	63.7	47.8	18.0	44.2	47.8	
Link Distance (m)		234.1	279.5	279.5		194.8	194.8		194.1	194.1	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)		1			0	11			0		
Queuing Penalty (veh)		0			2	6			0		

Network Summary

Network wide Queuing Penalty: 8

Intersection: 3: Ontario Street South & Pine Street

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	TR	L	T	TR	
Maximum Queue (m)	25.3	28.8	22.2	34.3	32.4	71.2	63.4	34.9	70.5	56.6	
Average Queue (m)	9.0	13.9	8.2	10.9	10.5	36.6	24.6	8.9	35.3	25.9	
95th Queue (m)	19.8	26.6	18.3	23.2	24.0	60.1	49.0	19.9	56.8	45.7	
Link Distance (m)		234.1	279.5	279.5		194.8	194.8		194.1	194.1	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)	1	5			0	12			2		
Queuing Penalty (veh)	2001	2			0	6			1		

Network Summary

Network wide Queuing Penalty: 10

Intersection: 3: Ontario Street South & Pine Street

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	. 22 7 7 1 1 4
Directions Served	L	TR	L	TR	L	T	TR	L	T	TR	
Maximum Queue (m)	20.0	28.6	34.9	34.3	32.3	54.2	47.7	27.8	47.0	47.7	
Average Queue (m)	7.2	11.5	9.3	15.6	8.4	32.9	18.5	10.1	32.5	24.1	
95th Queue (m)	16.8	21.1	22.3	29.7	20.0	50.1	41.4	19.5	52.9	46.1	
Link Distance (m)		234.1	279.5	279.5		194.8	194.8		194.1	194.1	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0				25.0		2 MA 8	45.0			
Storage Blk Time (%)	1	2			0	11			1		
Queuing Penalty (veh)	1	1			0	5			3.1		

Network Summary

Network wide Queuing Penalty: 7

) <u> </u>	۶	-	*	•	+	•	1	†	~	, 6	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኻ	1→		ሻ	1 >		ሻ	↑ ↑		ሻ	↑ ⊅	
Volume (vph)	42	28	72	35	14	121	59	779	27	132	740	38
Ideal Flow (vphpl)	1800	1850	1550	1800	1850	1550	1800	1850	1550	1800	1850	1550
Storage Length (m)	20.0		0.0	0.0		0.0	25.0		0.0	45.0	7	0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6		- i	7.6		4 ()	7.6			7.6		16 11
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt	841	0.892			0.865	1 2 1 2 1 1	1100	0.995		1.00	0.993	144
Flt Protected	0.950	OIOOL		0.950	0.000		0.950	0,000		0.950	01000	
Satd. Flow (prot)	1729	1669	0	1729	1618	0	1695	3469	0	1729	3463	0
Flt Permitted	0.663	1000	U	0.687	1010	V	0.334	0400	U	0.264	0400	U
Satd. Flow (perm)	1207	1669	0	1250	1618	0	596	3469	0	480	3463	0
Right Turn on Red	1201	1009	Yes	1230	1010	Yes	330	0403	Yes	400	0400	Yes
Satd. Flow (RTOR)		78	168		132	169		4	162		8	168
Link Speed (k/h)		40			50			50			50	
		248.4						205.4				
Link Distance (m)					293.8						204.8	
Travel Time (s)	0.00	22.4	0.00	0.00	21.2	0.00	0.00	14.8	0.00	0.00	14.7	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	2%	2%	0%	0%	2%	0%
Adj. Flow (vph)	46	30	78	38	15	132	64	847	29	143	804	41
Shared Lane Traffic (%)												
Lane Group Flow (vph)	46	108	0	38	147	0	64	876	0	143	845	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.02	1.28	1.06	1.02	1.28	1.06	1.02	1.28	1.06	1.02	1.28
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	Cl+Ex	CI+Ex		Cl+Ex	CI+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7		LI JANUA	28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex	1 P P P		Cl+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel		OHLA			OITLA			OITLA			OITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		nmint	NA	
Protected Phases	r ellil	NA 4		r ellili	NA 8		L GIIII			pm+pt		
	A	4		0	Ö		0	2		1	6	
Permitted Phases	4			8			2			6		

	•	\rightarrow	-	1	-	•	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8	USJ AL	2	2	No. of Lond	1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		15.0	15.0		5.0	15.0	
Minimum Split (s)	34.0	34.0		34.0	34.0		23.0	23.0		9.0	23.0	
Total Split (s)	38.0	38.0		38.0	38.0		50.0	50.0		17.0	67.0	
Total Split (%)	36.2%	36.2%		36.2%	36.2%		47.6%	47.6%		16.2%	63.8%	
Maximum Green (s)	31.0	31.0		31.0	31.0		44.0	44.0		13.0	61.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0		1.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		6.0	6.0		4.0	6.0	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		None	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	20.0	20.0	1	20.0	20.0		10.0	10.0			10.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0			0	
Act Effct Green (s)	10.4	10.4		10.4	10.4		49.6	49.6		63.0	61.0	
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.59	0.59		0.75	0.72	
v/c Ratio	0.31	0.39		0.25	0.47		0.18	0.43		0.31	0.34	
Control Delay	39.7	17.6		37.8	13.7		10.3	10.6		4.8	4.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	39.7	17.6		37.8	13.7		10.3	10.6		4.8	4.7	
LOS	D	В		D	В		В	В		Α	Α	
Approach Delay		24.2			18.6			10.6			4.7	
Approach LOS		С			В			В			Α	

Intersection Summary

Area Type: Other

Cycle Length: 105

Actuated Cycle Length: 84.4

Natural Cycle: 70

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.47 Intersection Signal Delay: 9.6

Intersection Capacity Utilization 73.2%

Analysis Period (min) 15

Intersection LOS: A ICU Level of Service D

Splits and Phases: 3: Ontario Street South & Pine Street

3: Ontario Street South & Pine Street

•••	. 3	•	• •
	1/	6/2	017

	•	-	1	←	1	†	1	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	46	108	38	147	64	876	143	845	
v/c Ratio	0.31	0.39	0.25	0.47	0.18	0.43	0.31	0.34	
Control Delay	39.7	17.6	37.8	13.7	10.3	10.6	4.8	4.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	39.7	17.6	37.8	13.7	10.3	10.6	4.8	4.7	
Queue Length 50th (m)	6.9	4.4	5.6	2.2	4.3	36.6	4.9	20.8	
Queue Length 95th (m)	16.7	18.4	14.6	17.9	11.7	55.1	10.2	31.2	
nternal Link Dist (m)		224.4		269.8		181.4		180.8	
Turn Bay Length (m)	20.0				25.0		45.0		
Base Capacity (vph)	443	662	459	677	350	2039	550	2504	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.10	0.16	0.08	0.22	0.18	0.43	0.26	0.34	
Intersection Summary		I THE	130	19 19 15	VINITE	1134		17 25 4	

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	5 700
Directions Served	L	TR	L	TR	L	Т	TR	L	Т	TR	
Maximum Queue (m)	27.2	29.5	22.1	28.0	32.3	59.2	66.0	52.2	62.4	34.3	
Average Queue (m)	11.6	15.7	7.9	14.3	11.1	37.0	25.3	15.5	26.4	14.9	
95th Queue (m)	25.0	27.8	17.6	22.6	23.7	56.6	52.2	29.3	45.5	29.0	
Link Distance (m)		234.1	279.5	279.5		194.8	194.8		194.1	194.1	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)	2	5				15			0		
Queuing Penalty (veh)	2	2				9			1		

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	E v. 19: 115
Directions Served	L	TR	L	TR	Ļ	Т	TR	L	Т	TR	
Maximum Queue (m)	27.2	47.5	21.3	41.2	32.4	72.1	61.1	52.3	60.5	43.0	
Average Queue (m)	13.1	16.1	9.4	17.8	11.8	42.1	28.8	18.8	28.2	18.7	
95th Queue (m)	25.3	30.7	17.9	33.3	26.8	67.0	54.3	35.7	46.0	34.4	
Link Distance (m)		234.1	279.5	279.5		194.8	194.8		194.1	194.1	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)	5	5			0	16		0	0		
Queuing Penalty (veh)	5	2			0	9		0	1		

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	Part of the last
Directions Served	L	TR	L	TR	L	Т	TR	L	Т	TR	
Maximum Queue (m)	27.3	35.1	21.5	27.9	32.4	54.2	53.2	22.0	47.3	41.4	
Average Queue (m)	8.6	14.9	8.2	12.4	10.8	34.4	23.9	12.4	26.0	16.0	
95th Queue (m)	20.3	27.9	17.9	22.1	27.6	55.5	48.5	20.2	42.4	34.7	
Link Distance (m)		234.1	279.5	279.5		194.8	194.8		194.1	194.1	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)	2	4			0	13			0		
Queuing Penalty (veh)	2	2501			0	8			0		

Network Summary

VII.	۶	→	*	•	+	4	*	†	~	1	\	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		ሻ	₽		Ϋ́	↑ ↑		ሻ	↑ ↑	
Volume (vph)	39	29	73	38	22	113	58	1010	42	105	1174	59
Ideal Flow (vphpl)	1800	1850	1550	1800	1850	1550	1800	1850	1550	1800	1850	1550
Storage Length (m)	20.0		0.0	0.0		0.0	25.0		0.0	45.0	1000	0.0
Storage Lanes	1		0	1		0	1		0	1		0.0
Taper Length (m)	7.6		- i	7.6		- T	7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.893		1.00	0.874	1.00	1.00	0.994	0.00	1.00	0.993	0.00
Flt Protected	0.950	0.000		0.950	0.011		0.950	0.004		0.950	0.000	
Satd. Flow (prot)	1679	1647	0	1729	1617	0	1729	3402	0	1729	3460	0
Flt Permitted	0.669	10-11	U	0.690	1017	0	0.221	0402	U	0.209	0400	U
Satd. Flow (perm)	1182	1647	0	1256	1617	0	402	3402	0	380	3460	0
Right Turn on Red	1102	1047	Yes	1230	1017	Yes	402	3402	Yes	300	3400	Yes
Satd. Flow (RTOR)		74	162		115	165		6	168		0	res
Link Speed (k/h)		40									9	
Link Distance (m)					50			50			50	
		52.3			293.8			205.4			204.8	
Travel Time (s)	0.00	4.7	0.00	0.00	21.2	0.00	0.00	14.8	0.00	0.00	14.7	0.00
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	3%	5%	0%	0%	7%	0%	0%	4%	0%	0%	2%	2%
Adj. Flow (vph)	40	30	74	39	22	115	59	1031	43	107	1198	60
Shared Lane Traffic (%)		72.7										
Lane Group Flow (vph)	40	104	0	39	137	0	59	1074	0	107	1258	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.02	1.28	1.06	1.02	1.28	1.06	1.02	1.28	1.06	1.02	1.28
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7		= 1 3	28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		Cl+Ex			Cl+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel		OHLA			OITLA			VITLA			OITLX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		nmint	NA	
Protected Phases	I CIIII	4		Helli	NA 8		remi	2		pm+pt		
Permitted Phases	1	4		0	0		0	2		1	6	
remilled Fliases	4			8			2			6		

3: Ontario Street South & Pine Street

	•	-	\rightarrow	•	←	*	1	†	~	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8		2	2	en l'	1	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		15.0	15.0		5.0	15.0	
Minimum Split (s)	34.0	34.0		34.0	34.0		23.0	23.0		9.0	23.0	
Total Split (s)	35.0	35.0		35.0	35.0		59.0	59.0		11.0	70.0	
Total Split (%)	33.3%	33.3%		33.3%	33.3%		56.2%	56.2%		10.5%	66.7%	
Maximum Green (s)	28.0	28.0		28.0	28.0		53.0	53.0		7.0	64.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0		1.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		6.0	6.0		4.0	6.0	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		None	Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0		10.0	10.0			10.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0			0	
Act Effct Green (s)	10.4	10.4		10.4	10.4		57.1	57.1		67.9	65.9	
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.64	0.64		0.76	0.74	
v/c Ratio	0.29	0.41		0.27	0.47		0.23	0.49		0.28	0.49	
Control Delay	41.1	18.8		40.1	16.0		11.0	10.0		4.6	5.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	41.1	18.8		40.1	16.0		11.0	10.0		4.6	5.6	
LOS	D	В		D	В		В	В		Α	Α	
Approach Delay		25.0			21.3			10.1			5.6	
Approach LOS		C			С			В			A	

Intersection Summary

Area Type: Other

Cycle Length: 105

Actuated Cycle Length: 89.3

Natural Cycle: 70

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.49 Intersection Signal Delay: 9.3 Intersection Capacity Utilization 86.1%

Intersection LOS: A ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 3: Ontario Street South & Pine Street

Lane Group Flow (vph)

Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn

Reduced v/c Ratio

Intersection Summary

v/c Ratio Control Delay Queue Delay Total Delay

3: Ontario Street South & Pine Street

0.18

0.11

0.10

0.23

0.23

0.49

outh & F	Pine St	treet						1/18/2017
۶	→	•	←	1	†	1	ļ	
EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	THE RESERVE THE PARTY OF THE PA
40	104	39	137	59	1074	107	1258	
0.29	0.41	0.27	0.47	0.23	0.49	0.28	0.49	
41.1	18.8	40.1	16.0	11.0	10.0	4.6	5.6	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
41.1	18.8	40.1	16.0	11.0	10.0	4.6	5.6	
6.2	4.6	6.1	3.3	4.1	48.2	3.6	37.0	
15.5	18.7	15.2	19.3	11.4	67.2	7.8	52.9	
	28.3		269.8		181.4		180.8	
20.0				25.0		45.0		
371	568	394	586	256	2176	394	2555	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

0.27

0.49

ntersection	TEG PERSON	TANK!			The state of the state of	3 (3 (3))	We - The
nt Delay, s/veh	0.2						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
/ol, veh/h	139		4	135	2	2	
Conflicting Peds, #/hr	0		0	0	0	0	
Sign Control	Free		Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length		-		-	0	THORIO .	
/eh in Median Storage, #	0	_	-	0	1	-	
Grade, %	0	- I.	5 - Francis	Ö	0		
Peak Hour Factor	92	92	92	92	92	92	
leavy Vehicles, %	2	2	2	2	2	2	
Nymt Flow	151	4	4	147	2	2	
//ajor/Minor	Major1		Major2	THE PARTY IS	Minor1	2 1 7 2 1	of Hills
Conflicting Flow All		0	155	0		150	N FD W
	0	0		0	308	153	
Stage 1 Stage 2					153		
	WI - SIL - 19		140		155		
Critical Howy	0#:	3 10 Aug	4.12	(#)	6.42	6.22	
Critical Howy Stg 1				•	5.42	ALLESS NIE	
Critical Hdwy Stg 2	:#:	*	0.040		5.42	-	
follow-up Hdwy			2.218	•	3.518	3.318	
ot Cap-1 Maneuver	•	•	1425		684	893	
Stage 1			The state of the s		875		
Stage 2		_(5)		(*)	873	-	
latoon blocked, %				100 %			
Nov Cap-1 Maneuver			1425	•:	682	893	
Nov Cap-2 Maneuver					709		
Stage 1	(2)	(a)	2	2	875	ě	
Stage 2		- 2		- 9	870		
pproach	EB	7400	WB		NB		
ICM Control Delay, s	0		0.2		9.6		
ICM LOS					Α		
linor Lane/Major Mvmt	NBLn1 EBT	EBR	WEL WET	Distriction of the	130 -		11, 11 70
apacity (veh/h)	790 -		1425 -				
CM Lane V/C Ratio	0.006 -		0.003 -				
CM Control Delay (s)	9.6		7.5 0				
CM Lane LOS	Α -		A A				
CM 95th %tile Q(veh)	0 -		0 -				

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	T	TR	L	T	TR	
Maximum Queue (m)	27.2	34.9	15.7	39.6	32.4	85.6	62.9	52.3	70.1	64.7	
Average Queue (m)	11.4	15.1	7.1	19.5	11.3	47.7	29.5	15.2	42.7	29.9	
95th Queue (m)	22.5	27.0	15.8	33.9	28.2	74.0	54.8	34.9	59.3	51.4	
Link Distance (m)		34.0	279.5	279.5		193.5	193.5		194.1	194.1	
Upstream Blk Time (%)		1									
Queuing Penalty (veh)		1									
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)	3	4			0	17			3		
Queuing Penalty (veh)	3	2		77	1	10			3		

Intersection: 6: Site Access & Pine Street

Movement	NB	
Directions Served	LR	
Maximum Queue (m)	9.0	
Average Queue (m)	1.5	
95th Queue (m)	6.9	
Link Distance (m)	41.4	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	TR	L	Т	TR	
Maximum Queue (m)	27.2	34.9	28.5	42.6	32.4	80.8	91.1	52.5	72.9	50.8	
Average Queue (m)	10.3	14.0	10.1	17.3	11.1	41.7	33.7	17.4	38.0	25.4	
95th Queue (m)	21.8	27.6	22.1	31.4	24.7	70.2	67.0	39.5	64.7	49,7	
Link Distance (m)		34.0	279.5	279.5		193.5	193.5		194.1	194.1	
Upstream Blk Time (%)		1111									
Queuing Penalty (veh)		1									
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)	2	4			1	17			3		
Queuing Penalty (veh)	2	1			5	10			3		

Intersection: 6: Site Access & Pine Street

Movement	WB	NB	
Directions Served	LT	LR	
Maximum Queue (m)	9.2	9.0	
Average Queue (m)	0.3	1.2	
95th Queue (m)	3.0	6.1	
Link Distance (m)	34.0	41.4	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	TR	L	Т	TR	
Maximum Queue (m)	27.4	35.1	21.8	48.1	32.2	86.1	65.1	27.2	79.8	72.2	
Average Queue (m)	9.2	20.3	8.2	15.0	12.6	41.9	31.8	11.7	32.1	22.2	
95th Queue (m)	22.2	33.5	19.0	28.6	25.8	72.2	60.7	21.0	58.2	49.2	
Link Distance (m)		34.0	279.5	279.5		193.5	193.5		194.1	194.1	
Upstream Blk Time (%)		- 1									
Queuing Penalty (veh)		1									
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)	2	10			1	12			1		
Queuing Penalty (veh)	2	4			5	7			1		

Intersection: 6: Site Access & Pine Street

Movement	EB	WB	NB	
Directions Served	TR	LT	LR	
Maximum Queue (m)	9.1	9.0	9.0	
Average Queue (m)	0.3	0.3	0.3	
95th Queue (m)	3.0	3.0	3.0	
Link Distance (m)	189.5	34.0	41.4	
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (m)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Network Summary

	•	-	*	•	-	4	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		ሻ	1→		ሻ	↑ ↑		ħ	† ‡	
Volume (vph)	48	43	82	53	22	185	68	901	40	200	853	44
Ideal Flow (vphpl)	1800	1850	1550	1800	1850	1550	1800	1850	1550	1800	1850	1550
Storage Length (m)	20.0		0.0	0.0		0.0	25.0		0.0	45.0		0.0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6		WILL.	7.6		3.6
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Frt		0.902		- 24	0.866		1100	0.994			0.993	
Flt Protected	0.950			0.950			0.950	3,33		0.950	0.000	
Satd. Flow (prot)	1729	1687	0	1729	1620	0	1695	3466	0	1729	3463	0
Flt Permitted	0.395			0.670	1020		0.294	0100		0.210	0.100	
Satd. Flow (perm)	719	1687	0	1219	1620	0	525	3466	0	382	3463	0
Right Turn on Red	, , ,	1001	Yes	1210	1020	Yes	020	0100	Yes	002	0100	Yes
Satd. Flow (RTOR)		87	331		201	100		5	100		9	100
Link Speed (k/h)		40			50			50			50	
Link Distance (m)		52.3			293.8		- 10	205.4			204.8	11500
Travel Time (s)		4.7			21.2			14.8			14.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
	0.92	0.92	0.92		0.92	0.92	2%	2%	0.92	0.92		0.92
Heavy Vehicles (%)				0%							2%	
Adj. Flow (vph)	52	47	89	58	24	201	74	979	43	217	927	48
Shared Lane Traffic (%)		400			005		74	4000	- 0	047	075	
Lane Group Flow (vph)	52	136	0	58	225	0	74	1022	0	217	975	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane				- Alterior	3.0				12			1,164
Headway Factor	1.06	1.02	1.28	1.06	1.02	1.28	1.06	1.02	1.28	1.06	1.02	1.28
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	Cl+Ex	CI+Ex		Cl+Ex	Cl+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	
Protected Phases		4		, 3,,,,	8		31111	2		1	6	
Permitted Phases	4			8			2	_		6	•	

	•	-	*	1	—	•	1	†	1	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	4	4		8	8	-15:	2	2		1	6	4,47
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		15.0	15.0		5.0	15.0	
Minimum Split (s)	34.0	34.0		34.0	34.0		23.0	23.0		9.0	23.0	
Total Split (s)	34.0	34.0		34.0	34.0		53.0	53.0		18.0	71.0	
Total Split (%)	32.4%	32.4%		32.4%	32.4%		50.5%	50.5%		17.1%	67.6%	
Maximum Green (s)	27.0	27.0		27.0	27.0		47.0	47.0		14.0	65.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		3.0	4.0	
All-Red Time (s)	3.0	3.0		3.0	3.0		2.0	2.0		1.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	7.0	7.0		7.0	7.0		6.0	6.0		4.0	6.0	
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		None	Max	100
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)	20.0	20.0		20.0	20.0		10.0	10.0			10.0	175-11
Pedestrian Calls (#/hr)	0	0		0	0		0	0			0	
Act Effct Green (s)	11.5	11.5		11.5	11.5		51.9	51.9		67.1	65.1	
Actuated g/C Ratio	0.13	0.13		0.13	0.13		0.58	0.58		0.75	0.73	
v/c Ratio	0.57	0.47		0.37	0.59		0.24	0.51		0.51	0.39	E 14 Y
Control Delay	60.5	20.5		42.7	14.2		13.5	13.0		7.9	5.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	60.5	20.5		42.7	14.2		13.5	13.0		7.9	5.3	
LOS	E	C		D	В		В	В		Α	A	EFV
Approach Delay		31.5			20.0			13.0			5.8	
Approach LOS		C			С			В			Α	

Intersection Summary

Area Type: Other

Cycle Length: 105

Actuated Cycle Length: 89.6

Natural Cycle: 75

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.59 Intersection Signal Delay: 11.9 Intersection Capacity Utilization 81.1%

Intersection LOS: B
ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Ontario Street South & Pine Street

3: Ontario Street South & Pine Street

	*	→	6	-	•	†	-	Ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	52	136	58	225	74	1022	217	975	
v/c Ratio	0.57	0.47	0.37	0.59	0.24	0.51	0.51	0.39	
Control Delay	60.5	20.5	42.7	14.2	13.5	13.0	7.9	5.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	60.5	20.5	42.7	14.2	13.5	13.0	7.9	5.3	
Queue Length 50th (m)	8.5	7.7	9.3	3.7	5.4	47.4	8.0	25.5	
Queue Length 95th (m)	20.4	23.9	20.6	23.5	17.1	82.5	17.7	43.5	
Internal Link Dist (m)		28.3		269.8		181.4		180.8	
Turn Bay Length (m)	20.0				25.0		45.0		
Base Capacity (vph)	216	569	367	628	303	2008	496	2517	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.24	0.16	0.36	0.24	0.51	0.44	0.39	
Intersection Summary		90,200		A LIII SO	10000	1000			

Intersection	11000	1 - 6	100	440	TT- 1	ST THE	The state of the s			2 / 2 / 2
Int Delay, s/veh	0.2									
	Section 12		mnn		TAID!			-	i isali	
Movement	100	EBT	EBR		WBL	WBT	N	BL	NBR	32 TV 10 B
Vol, veh/h		171	3		3	131		2	2	
Conflicting Peds, #/hr		0	0		0	0		0	0	
Sign Control		Free	Free		Free	Free	St	ор	Stop	
RT Channelized		-	None			None		-	None	
Storage Length		41.5				-		0	0.3	
Veh in Median Storage, #		0	-		5.00	0		1		
Grade, %		0	445		-	0		0		
Peak Hour Factor		92	92		92	92		92	92	
Heavy Vehicles, %		2	2		2	2		2	2	
Mvmt Flow		186	3		3	142		2	2	
Major/Minor		Major1			Major2	- Total St. (1975)	Mino	r1		
Conflicting Flow All		0	0	-	189	0		37	188	
Stage 1		U	-					3 <i>1</i> 88		
Stage 2						385		66 49		
					4.12				6.00	
Critical Hdwy						:::::	6		6.22	
Critical Hdwy Stg 1		130			10.00		5.			
Critical Hdwy Stg 2			() * :		0.040		5.4		0.040	-
Follow-up Hdwy		-	34		2.218	- *	3.5		3.318	
Pot Cap-1 Maneuver		-			1385			58	854	
Stage 1		100						44	arren 18. h	
Stage 2							8	79		
Platoon blocked, %		15				1.5				
Mov Cap-1 Maneuver					1385			57	854	
Mov Cap-2 Maneuver						10		92		
Stage 1		(*)	3.60			3#3		44	*	
Stage 2					-	-	8.	77	17 28	
Approach	21, 125 17	EB	200	3 = 1	WB	-55	No.	IB		0.3/1-15
HCM Control Delay, s		0			0.2			.7		
HCM LOS					J.L		p to ad a ma	A		
10.11 200								, ,		
Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT				127 3	
Capacity (veh/h)	765		\$ 	1385	(#)					
HCM Lane V/C Ratio	0.006			0.002						
HCM Control Delay (s)	9.7	::::) =)	7.6	0					
HCM Lane LOS	Α			Α	Α					

0 - -

0

HCM 95th %tile Q(veh)

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	TR	L	TR	L	Т	TR	L	T	TR	
Maximum Queue (m)	27.4	35.3	28.3	41.6	32.4	110.2	107.1	51.8	61.9	52.2	
Average Queue (m)	12.1	20.0	12.1	20.2	16.0	53.2	44.4	24.3	32.3	22.3	
95th Queue (m)	25.7	33.9	24.8	37.8	34.8	88.8	77.2	43.5	57.8	48.3	
Link Distance (m)		33.9	279.5	279.5		193.5	193.5		194.1	194.1	
Upstream Blk Time (%)		2									
Queuing Penalty (veh)		4									
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)	1	10			0	22		2	2		
Queuing Penalty (veh)	2	5			0	15		8	4		

Intersection: 6: Site Access & Pine Street

Movement	EB	NB	
Directions Served	TR	LR	
Maximum Queue (m)	15.6	9.0	
Average Queue (m)	1.3	1.2	
95th Queue (m)	7.2	6.1	
Link Distance (m)	189.5	62.0	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (m)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	TR	L	TR	L	Т	TR	L	Т	TR
Maximum Queue (m)	27.2	29.0	27.8	47.4	32.4	109.6	85.6	52.2	60.1	48.2
Average Queue (m)	8.9	17.3	11.6	25.2	12.7	45.2	32.5	23.1	26.7	23.9
95th Queue (m)	20.7	30.1	24.1	44.1	27.5	77.6	63.0	38.6	47.6	40.6
Link Distance (m)		33.9	279.5	279.5		193.5	193.5		194.1	194.1
Upstream Blk Time (%)		0								
Queuing Penalty (veh)		0								
Storage Bay Dist (m)	20.0				25.0			45.0		
Storage Blk Time (%)	0	9			0	20			1	
Queuing Penalty (veh)	0	4			2	14			1	

Intersection: 6: Site Access & Pine Street

Movement	NB	
Directions Served	LR	
Maximum Queue (m)	9.0	
Average Queue (m)	1.5	
95th Queue (m)	6.9	
Link Distance (m)	62.0	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	EB	WB	WB	NB	NB	NB	SB	SB	SB	Water of the
Directions Served	L	TR	L	TR	L	Т	TR	L	T	TR	
Maximum Queue (m)	27.1	34.9	27.8	42.3	32.4	90.9	67.8	46.2	51.8	45.8	
Average Queue (m)	9.9	19.1	12.0	22.6	12.9	47.5	35.4	19.9	29.4	21.1	
95th Queue (m)	22.2	31.3	22.5	37.4	29.8	75.8	63.4	34.3	46.7	39.6	
Link Distance (m)		33.9	279.5	279.5		193.5	193.5		194.1	194.1	
Upstream Blk Time (%)		1									
Queuing Penalty (veh)		1									
Storage Bay Dist (m)	20.0				25.0			45.0			
Storage Blk Time (%)	6	5			0	21		0	1		
Queuing Penalty (veh)	7	3			0	15		1	2		

Intersection: 6: Site Access & Pine Street

Movement	NB	
Directions Served	LR	
Maximum Queue (m)	9.0	
Average Queue (m)	2.0	
95th Queue (m)	8.2	
Link Distance (m)	62.0	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (m)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Figure 2.3.3.4a Sight Distance for Crossing Movements and Vehicles Turning Left across Passenger Vehicle approaching from the Left

 $\mathsf{A}-\mathsf{sight}$ distance for passenger vehicle crossing a two –lane roadway from stop.

B-1 — sight distance for passenger vehicle turning left onto a two-lane roadway across passenger vehicle approaching from the left.

B-1-4 lane + median – sight distance for passenger vehicle turning left onto a four-lane roadway across passenger vehicle approaching from the left when median width is less than the vehicle length.

Figure 2.3.3.4b

Sight Distance for Turning Movements with Vehicles approaching in the Intended Direction of Travel 110

Area bounded by AASHTO B1 and B-2b (crosshatched) – design domain for sight distance for passenger vehicle to turn left onto a two-lane roadway without being overtaken by a vehicle approaching from the right.

Area bounded by AASHTO B2 and Cb (shaded) - design domain for sight distance for passenger vehicle to turn right onto a two-lane roadway without being overtaken by a vehicle approaching from the left.

FIGURES

architect inc.

NO.86

N 38° 21' 30" E

FIGURE 2

PROPOSED

38.79 m

47.785 m

*2.22 m

6.00 m

7.01 m

*17.5 m

10.50 m

PRIVATE 19x1.5=29 SP VISITOR (0.25 PER UNIT) - 5 SPACES TOTAL - 34 SPACES TOTAL - 25 SPACES * PRIVATE - 25 SPACES VISITOR (0.25 PER UNIT) - 5 SPACES TOTAL - 30 SPACES

643.33 sq.m (34.89%)

1,843.82 sq.m./0.184 ha

REQUIRED

30.0 m

35.0 m

6.0 m

6.0 m

6.0 m

22.50 m

12.50 m

30%

LOCATION MAR.T.S.

